Spaces:
Starting
Starting
Update gradio_app.py
Browse files- gradio_app.py +15 -57
gradio_app.py
CHANGED
|
@@ -47,12 +47,10 @@ def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.
|
|
| 47 |
"""Create an RGBA image from RGB image and optional mask."""
|
| 48 |
rgba_image = rgb_image.convert('RGBA')
|
| 49 |
if mask is not None:
|
| 50 |
-
print("[debug] mask shape before alpha:", mask.shape)
|
| 51 |
# Ensure mask is 2D before converting to alpha
|
| 52 |
if len(mask.shape) > 2:
|
| 53 |
mask = mask.squeeze()
|
| 54 |
alpha = Image.fromarray((mask * 255).astype(np.uint8))
|
| 55 |
-
print("[debug] alpha size:", alpha.size)
|
| 56 |
rgba_image.putalpha(alpha)
|
| 57 |
return rgba_image
|
| 58 |
|
|
@@ -61,8 +59,7 @@ def create_batch(input_image: Image.Image) -> dict[str, Any]:
|
|
| 61 |
# Resize and convert input image to numpy array
|
| 62 |
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
|
| 63 |
img_array = np.array(resized_image).astype(np.float32) / 255.0
|
| 64 |
-
|
| 65 |
-
|
| 66 |
# Extract RGB and alpha channels
|
| 67 |
if img_array.shape[-1] == 4: # RGBA
|
| 68 |
rgb = img_array[..., :3]
|
|
@@ -74,25 +71,18 @@ def create_batch(input_image: Image.Image) -> dict[str, Any]:
|
|
| 74 |
# Convert to tensors while keeping channel-last format
|
| 75 |
rgb = torch.from_numpy(rgb).float() # [H, W, 3]
|
| 76 |
mask = torch.from_numpy(mask).float() # [H, W, 1]
|
| 77 |
-
|
| 78 |
-
print("[debug] mask tensor shape:", mask.shape)
|
| 79 |
-
|
| 80 |
# Create background blend (match channel-last format)
|
| 81 |
bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3) # [1, 1, 3]
|
| 82 |
-
|
| 83 |
-
|
| 84 |
# Blend RGB with background using mask (all in channel-last format)
|
| 85 |
rgb_cond = torch.lerp(bg_tensor, rgb, mask) # [H, W, 3]
|
| 86 |
-
|
| 87 |
-
|
| 88 |
# Move channels to correct dimension and add batch dimension
|
| 89 |
# Important: For SPAR3D image tokenizer, we need [B, H, W, C] format
|
| 90 |
rgb_cond = rgb_cond.unsqueeze(0) # [1, H, W, 3]
|
| 91 |
mask = mask.unsqueeze(0) # [1, H, W, 1]
|
| 92 |
|
| 93 |
-
print("[debug] rgb_cond final shape:", rgb_cond.shape)
|
| 94 |
-
print("[debug] mask final shape:", mask.shape)
|
| 95 |
-
|
| 96 |
# Create the batch dictionary
|
| 97 |
batch = {
|
| 98 |
"rgb_cond": rgb_cond, # [1, H, W, 3]
|
|
@@ -102,35 +92,20 @@ def create_batch(input_image: Image.Image) -> dict[str, Any]:
|
|
| 102 |
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), # [1, 3, 3]
|
| 103 |
}
|
| 104 |
|
| 105 |
-
print("\nFinal batch shapes:")
|
| 106 |
for k, v in batch.items():
|
| 107 |
print(f"[debug] {k} final shape:", v.shape)
|
| 108 |
-
|
| 109 |
-
print("rgb_cond min:", batch["rgb_cond"].min())
|
| 110 |
-
print("mask_cond unique values:", torch.unique(batch["mask_cond"]))
|
| 111 |
-
|
| 112 |
return batch
|
| 113 |
|
| 114 |
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
|
| 115 |
"""Process batch through model and generate point cloud."""
|
| 116 |
-
|
| 117 |
-
print("[debug] Input rgb_cond shape:", batch["rgb_cond"].shape)
|
| 118 |
-
print("[debug] Input mask_cond shape:", batch["mask_cond"].shape)
|
| 119 |
-
|
| 120 |
batch_size = batch["rgb_cond"].shape[0]
|
| 121 |
assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
|
| 122 |
|
| 123 |
-
# Print value ranges for debugging
|
| 124 |
-
print("\nValue ranges:")
|
| 125 |
-
print("rgb_cond max:", batch["rgb_cond"].max())
|
| 126 |
-
print("rgb_cond min:", batch["rgb_cond"].min())
|
| 127 |
-
print("mask_cond unique values:", torch.unique(batch["mask_cond"]))
|
| 128 |
-
|
| 129 |
# Generate point cloud tokens
|
| 130 |
-
print("\n[debug] Generating point cloud tokens")
|
| 131 |
try:
|
| 132 |
cond_tokens = system.forward_pdiff_cond(batch)
|
| 133 |
-
print("[debug] cond_tokens shape:", cond_tokens.shape)
|
| 134 |
except Exception as e:
|
| 135 |
print("\n[ERROR] Failed in forward_pdiff_cond:")
|
| 136 |
print(e)
|
|
@@ -141,7 +116,6 @@ def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
|
|
| 141 |
raise
|
| 142 |
|
| 143 |
# Sample points
|
| 144 |
-
print("\n[debug] Sampling points")
|
| 145 |
sample_iter = system.sampler.sample_batch_progressive(
|
| 146 |
batch_size,
|
| 147 |
cond_tokens,
|
|
@@ -153,18 +127,14 @@ def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
|
|
| 153 |
for x in sample_iter:
|
| 154 |
samples = x["xstart"]
|
| 155 |
|
| 156 |
-
print("[debug] samples shape before permute:", samples.shape)
|
| 157 |
pc_cond = samples.permute(0, 2, 1).float()
|
| 158 |
-
|
| 159 |
-
|
| 160 |
# Normalize point cloud
|
| 161 |
pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
# Subsample to 512 points
|
| 165 |
pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]
|
| 166 |
-
|
| 167 |
-
|
| 168 |
return pc_cond
|
| 169 |
|
| 170 |
def generate_and_process_3d(prompt: str, seed: int = 42) -> tuple[str | None, Image.Image | None]:
|
|
@@ -180,7 +150,6 @@ def generate_and_process_3d(prompt: str, seed: int = 42) -> tuple[str | None, Im
|
|
| 180 |
|
| 181 |
# Generate image using FLUX
|
| 182 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 183 |
-
print("[debug] generating the image using Flux")
|
| 184 |
generated_image = flux_pipe(
|
| 185 |
prompt=prompt,
|
| 186 |
width=width,
|
|
@@ -190,10 +159,8 @@ def generate_and_process_3d(prompt: str, seed: int = 42) -> tuple[str | None, Im
|
|
| 190 |
guidance_scale=0.0
|
| 191 |
).images[0]
|
| 192 |
|
| 193 |
-
print("[debug] converting the image to rgb")
|
| 194 |
rgb_image = generated_image.convert('RGB')
|
| 195 |
|
| 196 |
-
print("[debug] removing the background by calling bg_remover.process(rgb_image)")
|
| 197 |
# bg_remover returns a PIL Image already, no need to convert
|
| 198 |
no_bg_image = bg_remover.process(rgb_image)
|
| 199 |
print(f"[debug] no_bg_image type: {type(no_bg_image)}, mode: {no_bg_image.mode}")
|
|
@@ -202,7 +169,6 @@ def generate_and_process_3d(prompt: str, seed: int = 42) -> tuple[str | None, Im
|
|
| 202 |
rgba_image = no_bg_image.convert('RGBA')
|
| 203 |
print(f"[debug] rgba_image mode: {rgba_image.mode}")
|
| 204 |
|
| 205 |
-
print("[debug] auto-cropping the rgba_image using spar3d_utils.foreground_crop(...)")
|
| 206 |
processed_image = spar3d_utils.foreground_crop(
|
| 207 |
rgba_image,
|
| 208 |
crop_ratio=1.3,
|
|
@@ -215,7 +181,6 @@ def generate_and_process_3d(prompt: str, seed: int = 42) -> tuple[str | None, Im
|
|
| 215 |
print(f"[debug] Alpha channel stats - min: {alpha.min()}, max: {alpha.max()}, unique: {np.unique(alpha)}")
|
| 216 |
|
| 217 |
# Prepare batch for processing
|
| 218 |
-
print("[debug] preparing the batch by calling create_batch(processed_image)")
|
| 219 |
batch = create_batch(processed_image)
|
| 220 |
batch = {k: v.to(device) for k, v in batch.items()}
|
| 221 |
|
|
@@ -231,7 +196,6 @@ def generate_and_process_3d(prompt: str, seed: int = 42) -> tuple[str | None, Im
|
|
| 231 |
|
| 232 |
# Generate mesh
|
| 233 |
with torch.no_grad():
|
| 234 |
-
print("[debug] calling torch.autocast(....) to generate the mesh")
|
| 235 |
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
|
| 236 |
trimesh_mesh, _ = spar3d_model.generate_mesh(
|
| 237 |
batch,
|
|
@@ -243,20 +207,18 @@ def generate_and_process_3d(prompt: str, seed: int = 42) -> tuple[str | None, Im
|
|
| 243 |
trimesh_mesh = trimesh_mesh[0]
|
| 244 |
|
| 245 |
# Export to GLB
|
| 246 |
-
print("[debug] creating tmp dir for the .glb output")
|
| 247 |
temp_dir = tempfile.mkdtemp()
|
| 248 |
output_path = os.path.join(temp_dir, 'output.glb')
|
| 249 |
|
| 250 |
-
print("[debug] calling trimesh_mesh.export(...) to export to .glb")
|
| 251 |
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
|
| 252 |
|
| 253 |
-
return output_path
|
| 254 |
|
| 255 |
except Exception as e:
|
| 256 |
print(f"Error during generation: {str(e)}")
|
| 257 |
import traceback
|
| 258 |
traceback.print_exc()
|
| 259 |
-
return None
|
| 260 |
|
| 261 |
# Create Gradio interface
|
| 262 |
demo = gr.Interface(
|
|
@@ -276,16 +238,12 @@ demo = gr.Interface(
|
|
| 276 |
],
|
| 277 |
outputs=[
|
| 278 |
gr.Model3D(
|
| 279 |
-
label="3D
|
| 280 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
| 281 |
-
)
|
| 282 |
-
gr.Image(
|
| 283 |
-
label="Generated Image",
|
| 284 |
-
type="pil"
|
| 285 |
-
),
|
| 286 |
],
|
| 287 |
-
title="Text to 3D
|
| 288 |
-
description="Enter a text prompt to generate an image that will be converted into a 3D model",
|
| 289 |
)
|
| 290 |
|
| 291 |
if __name__ == "__main__":
|
|
|
|
| 47 |
"""Create an RGBA image from RGB image and optional mask."""
|
| 48 |
rgba_image = rgb_image.convert('RGBA')
|
| 49 |
if mask is not None:
|
|
|
|
| 50 |
# Ensure mask is 2D before converting to alpha
|
| 51 |
if len(mask.shape) > 2:
|
| 52 |
mask = mask.squeeze()
|
| 53 |
alpha = Image.fromarray((mask * 255).astype(np.uint8))
|
|
|
|
| 54 |
rgba_image.putalpha(alpha)
|
| 55 |
return rgba_image
|
| 56 |
|
|
|
|
| 59 |
# Resize and convert input image to numpy array
|
| 60 |
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
|
| 61 |
img_array = np.array(resized_image).astype(np.float32) / 255.0
|
| 62 |
+
|
|
|
|
| 63 |
# Extract RGB and alpha channels
|
| 64 |
if img_array.shape[-1] == 4: # RGBA
|
| 65 |
rgb = img_array[..., :3]
|
|
|
|
| 71 |
# Convert to tensors while keeping channel-last format
|
| 72 |
rgb = torch.from_numpy(rgb).float() # [H, W, 3]
|
| 73 |
mask = torch.from_numpy(mask).float() # [H, W, 1]
|
| 74 |
+
|
|
|
|
|
|
|
| 75 |
# Create background blend (match channel-last format)
|
| 76 |
bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3) # [1, 1, 3]
|
| 77 |
+
|
|
|
|
| 78 |
# Blend RGB with background using mask (all in channel-last format)
|
| 79 |
rgb_cond = torch.lerp(bg_tensor, rgb, mask) # [H, W, 3]
|
| 80 |
+
|
|
|
|
| 81 |
# Move channels to correct dimension and add batch dimension
|
| 82 |
# Important: For SPAR3D image tokenizer, we need [B, H, W, C] format
|
| 83 |
rgb_cond = rgb_cond.unsqueeze(0) # [1, H, W, 3]
|
| 84 |
mask = mask.unsqueeze(0) # [1, H, W, 1]
|
| 85 |
|
|
|
|
|
|
|
|
|
|
| 86 |
# Create the batch dictionary
|
| 87 |
batch = {
|
| 88 |
"rgb_cond": rgb_cond, # [1, H, W, 3]
|
|
|
|
| 92 |
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), # [1, 3, 3]
|
| 93 |
}
|
| 94 |
|
|
|
|
| 95 |
for k, v in batch.items():
|
| 96 |
print(f"[debug] {k} final shape:", v.shape)
|
| 97 |
+
|
|
|
|
|
|
|
|
|
|
| 98 |
return batch
|
| 99 |
|
| 100 |
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
|
| 101 |
"""Process batch through model and generate point cloud."""
|
| 102 |
+
|
|
|
|
|
|
|
|
|
|
| 103 |
batch_size = batch["rgb_cond"].shape[0]
|
| 104 |
assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
# Generate point cloud tokens
|
|
|
|
| 107 |
try:
|
| 108 |
cond_tokens = system.forward_pdiff_cond(batch)
|
|
|
|
| 109 |
except Exception as e:
|
| 110 |
print("\n[ERROR] Failed in forward_pdiff_cond:")
|
| 111 |
print(e)
|
|
|
|
| 116 |
raise
|
| 117 |
|
| 118 |
# Sample points
|
|
|
|
| 119 |
sample_iter = system.sampler.sample_batch_progressive(
|
| 120 |
batch_size,
|
| 121 |
cond_tokens,
|
|
|
|
| 127 |
for x in sample_iter:
|
| 128 |
samples = x["xstart"]
|
| 129 |
|
|
|
|
| 130 |
pc_cond = samples.permute(0, 2, 1).float()
|
| 131 |
+
|
|
|
|
| 132 |
# Normalize point cloud
|
| 133 |
pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)
|
| 134 |
+
|
|
|
|
| 135 |
# Subsample to 512 points
|
| 136 |
pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]
|
| 137 |
+
|
|
|
|
| 138 |
return pc_cond
|
| 139 |
|
| 140 |
def generate_and_process_3d(prompt: str, seed: int = 42) -> tuple[str | None, Image.Image | None]:
|
|
|
|
| 150 |
|
| 151 |
# Generate image using FLUX
|
| 152 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
| 153 |
generated_image = flux_pipe(
|
| 154 |
prompt=prompt,
|
| 155 |
width=width,
|
|
|
|
| 159 |
guidance_scale=0.0
|
| 160 |
).images[0]
|
| 161 |
|
|
|
|
| 162 |
rgb_image = generated_image.convert('RGB')
|
| 163 |
|
|
|
|
| 164 |
# bg_remover returns a PIL Image already, no need to convert
|
| 165 |
no_bg_image = bg_remover.process(rgb_image)
|
| 166 |
print(f"[debug] no_bg_image type: {type(no_bg_image)}, mode: {no_bg_image.mode}")
|
|
|
|
| 169 |
rgba_image = no_bg_image.convert('RGBA')
|
| 170 |
print(f"[debug] rgba_image mode: {rgba_image.mode}")
|
| 171 |
|
|
|
|
| 172 |
processed_image = spar3d_utils.foreground_crop(
|
| 173 |
rgba_image,
|
| 174 |
crop_ratio=1.3,
|
|
|
|
| 181 |
print(f"[debug] Alpha channel stats - min: {alpha.min()}, max: {alpha.max()}, unique: {np.unique(alpha)}")
|
| 182 |
|
| 183 |
# Prepare batch for processing
|
|
|
|
| 184 |
batch = create_batch(processed_image)
|
| 185 |
batch = {k: v.to(device) for k, v in batch.items()}
|
| 186 |
|
|
|
|
| 196 |
|
| 197 |
# Generate mesh
|
| 198 |
with torch.no_grad():
|
|
|
|
| 199 |
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
|
| 200 |
trimesh_mesh, _ = spar3d_model.generate_mesh(
|
| 201 |
batch,
|
|
|
|
| 207 |
trimesh_mesh = trimesh_mesh[0]
|
| 208 |
|
| 209 |
# Export to GLB
|
|
|
|
| 210 |
temp_dir = tempfile.mkdtemp()
|
| 211 |
output_path = os.path.join(temp_dir, 'output.glb')
|
| 212 |
|
|
|
|
| 213 |
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
|
| 214 |
|
| 215 |
+
return output_path
|
| 216 |
|
| 217 |
except Exception as e:
|
| 218 |
print(f"Error during generation: {str(e)}")
|
| 219 |
import traceback
|
| 220 |
traceback.print_exc()
|
| 221 |
+
return None
|
| 222 |
|
| 223 |
# Create Gradio interface
|
| 224 |
demo = gr.Interface(
|
|
|
|
| 238 |
],
|
| 239 |
outputs=[
|
| 240 |
gr.Model3D(
|
| 241 |
+
label="Generated 3D model",
|
| 242 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
| 243 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
],
|
| 245 |
+
title="Text to 3D",
|
| 246 |
+
description="Enter a text prompt to generate an image that will be converted into a 3D model using Stable Point-Awaire 3D by Stability AI.",
|
| 247 |
)
|
| 248 |
|
| 249 |
if __name__ == "__main__":
|