Spaces:
Starting
Starting
Update gradio_app.py
Browse files- gradio_app.py +78 -24
gradio_app.py
CHANGED
|
@@ -7,6 +7,7 @@ from PIL import Image
|
|
| 7 |
import gradio as gr
|
| 8 |
import trimesh
|
| 9 |
from transparent_background import Remover
|
|
|
|
| 10 |
|
| 11 |
# Import and setup SPAR3D
|
| 12 |
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
|
|
@@ -23,12 +24,19 @@ BACKGROUND_COLOR = [0.5, 0.5, 0.5]
|
|
| 23 |
# Initialize models
|
| 24 |
device = spar3d_utils.get_device()
|
| 25 |
bg_remover = Remover()
|
| 26 |
-
|
| 27 |
"stabilityai/stable-point-aware-3d",
|
| 28 |
config_name="config.yaml",
|
| 29 |
weight_name="model.safetensors"
|
| 30 |
).eval().to(device)
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# Initialize camera parameters
|
| 33 |
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
|
| 34 |
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
|
|
@@ -59,20 +67,30 @@ def create_batch(input_image: Image) -> dict[str, Any]:
|
|
| 59 |
}
|
| 60 |
return batch
|
| 61 |
|
| 62 |
-
def
|
| 63 |
-
"""
|
| 64 |
try:
|
| 65 |
-
#
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# Remove background if needed
|
| 69 |
-
|
| 70 |
-
input_image = bg_remover.process(input_image.convert("RGB"))
|
| 71 |
|
| 72 |
# Auto crop
|
| 73 |
input_image = spar3d_utils.foreground_crop(
|
| 74 |
input_image,
|
| 75 |
-
crop_ratio=1.3,
|
| 76 |
newsize=(COND_WIDTH, COND_HEIGHT),
|
| 77 |
no_crop=False
|
| 78 |
)
|
|
@@ -83,10 +101,10 @@ def process_image(image_path: str) -> str:
|
|
| 83 |
|
| 84 |
# Generate mesh
|
| 85 |
with torch.no_grad():
|
| 86 |
-
with torch.autocast(device_type=device, dtype=torch.bfloat16)
|
| 87 |
-
trimesh_mesh, _ =
|
| 88 |
batch,
|
| 89 |
-
1024,
|
| 90 |
remesh="none",
|
| 91 |
vertex_count=-1,
|
| 92 |
estimate_illumination=True
|
|
@@ -97,24 +115,60 @@ def process_image(image_path: str) -> str:
|
|
| 97 |
temp_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
|
| 98 |
trimesh_mesh.export(temp_file.name, file_type="glb", include_normals=True)
|
| 99 |
|
| 100 |
-
return temp_file.name
|
| 101 |
|
| 102 |
except Exception as e:
|
| 103 |
-
return str(e)
|
| 104 |
|
| 105 |
# Create Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
demo = gr.Interface(
|
| 107 |
-
fn=
|
| 108 |
-
inputs=
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
)
|
| 119 |
|
| 120 |
if __name__ == "__main__":
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import trimesh
|
| 9 |
from transparent_background import Remover
|
| 10 |
+
from diffusers import DiffusionPipeline
|
| 11 |
|
| 12 |
# Import and setup SPAR3D
|
| 13 |
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
|
|
|
|
| 24 |
# Initialize models
|
| 25 |
device = spar3d_utils.get_device()
|
| 26 |
bg_remover = Remover()
|
| 27 |
+
spar3d_model = SPAR3D.from_pretrained(
|
| 28 |
"stabilityai/stable-point-aware-3d",
|
| 29 |
config_name="config.yaml",
|
| 30 |
weight_name="model.safetensors"
|
| 31 |
).eval().to(device)
|
| 32 |
|
| 33 |
+
# Initialize FLUX model
|
| 34 |
+
dtype = torch.bfloat16
|
| 35 |
+
flux_pipe = DiffusionPipeline.from_pretrained(
|
| 36 |
+
"black-forest-labs/FLUX.1-schnell",
|
| 37 |
+
torch_dtype=dtype
|
| 38 |
+
).to(device)
|
| 39 |
+
|
| 40 |
# Initialize camera parameters
|
| 41 |
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
|
| 42 |
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
|
|
|
|
| 67 |
}
|
| 68 |
return batch
|
| 69 |
|
| 70 |
+
def generate_and_process_3d(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024) -> str:
|
| 71 |
+
"""Generate image from prompt and convert to 3D model."""
|
| 72 |
try:
|
| 73 |
+
# Generate image using FLUX
|
| 74 |
+
generator = torch.Generator().manual_seed(seed)
|
| 75 |
+
generated_image = flux_pipe(
|
| 76 |
+
prompt=prompt,
|
| 77 |
+
width=width,
|
| 78 |
+
height=height,
|
| 79 |
+
num_inference_steps=4,
|
| 80 |
+
generator=generator,
|
| 81 |
+
guidance_scale=0.0
|
| 82 |
+
).images[0]
|
| 83 |
+
|
| 84 |
+
# Convert PIL image to RGBA
|
| 85 |
+
input_image = generated_image.convert("RGBA")
|
| 86 |
|
| 87 |
# Remove background if needed
|
| 88 |
+
input_image = bg_remover.process(input_image.convert("RGB"))
|
|
|
|
| 89 |
|
| 90 |
# Auto crop
|
| 91 |
input_image = spar3d_utils.foreground_crop(
|
| 92 |
input_image,
|
| 93 |
+
crop_ratio=1.3,
|
| 94 |
newsize=(COND_WIDTH, COND_HEIGHT),
|
| 95 |
no_crop=False
|
| 96 |
)
|
|
|
|
| 101 |
|
| 102 |
# Generate mesh
|
| 103 |
with torch.no_grad():
|
| 104 |
+
with torch.autocast(device_type=device, dtype=torch.bfloat16):
|
| 105 |
+
trimesh_mesh, _ = spar3d_model.generate_mesh(
|
| 106 |
batch,
|
| 107 |
+
1024, # texture_resolution
|
| 108 |
remesh="none",
|
| 109 |
vertex_count=-1,
|
| 110 |
estimate_illumination=True
|
|
|
|
| 115 |
temp_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
|
| 116 |
trimesh_mesh.export(temp_file.name, file_type="glb", include_normals=True)
|
| 117 |
|
| 118 |
+
return temp_file.name, generated_image
|
| 119 |
|
| 120 |
except Exception as e:
|
| 121 |
+
return str(e), None
|
| 122 |
|
| 123 |
# Create Gradio interface
|
| 124 |
+
examples = [
|
| 125 |
+
"a tiny astronaut hatching from an egg on the moon",
|
| 126 |
+
"a cat holding a sign that says hello world",
|
| 127 |
+
"an anime illustration of a wiener schnitzel",
|
| 128 |
+
]
|
| 129 |
+
|
| 130 |
demo = gr.Interface(
|
| 131 |
+
fn=generate_and_process_3d,
|
| 132 |
+
inputs=[
|
| 133 |
+
gr.Text(
|
| 134 |
+
label="Enter your prompt",
|
| 135 |
+
placeholder="Describe what you want to generate..."
|
| 136 |
+
),
|
| 137 |
+
gr.Slider(
|
| 138 |
+
label="Seed",
|
| 139 |
+
minimum=0,
|
| 140 |
+
maximum=np.iinfo(np.int32).max,
|
| 141 |
+
step=1,
|
| 142 |
+
value=42
|
| 143 |
+
),
|
| 144 |
+
gr.Slider(
|
| 145 |
+
label="Width",
|
| 146 |
+
minimum=256,
|
| 147 |
+
maximum=2048,
|
| 148 |
+
step=32,
|
| 149 |
+
value=1024
|
| 150 |
+
),
|
| 151 |
+
gr.Slider(
|
| 152 |
+
label="Height",
|
| 153 |
+
minimum=256,
|
| 154 |
+
maximum=2048,
|
| 155 |
+
step=32,
|
| 156 |
+
value=1024
|
| 157 |
+
)
|
| 158 |
+
],
|
| 159 |
+
outputs=[
|
| 160 |
+
gr.File(
|
| 161 |
+
label="Download GLB",
|
| 162 |
+
file_types=[".glb"],
|
| 163 |
+
),
|
| 164 |
+
gr.Image(
|
| 165 |
+
label="Generated Image",
|
| 166 |
+
type="pil"
|
| 167 |
+
)
|
| 168 |
+
],
|
| 169 |
+
title="Text to 3D Model Generator",
|
| 170 |
+
description="Enter a text prompt to generate an image that will be converted into a 3D model",
|
| 171 |
+
examples=examples
|
| 172 |
)
|
| 173 |
|
| 174 |
if __name__ == "__main__":
|