Spaces:
Runtime error
Runtime error
| import os | |
| os.system("pip install gradio==3.0.18") | |
| os.system("pip install git+https://github.com/openai/whisper.git") | |
| from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification | |
| import gradio as gr | |
| import whisper | |
| import spacy | |
| nlp = spacy.load('en_core_web_sm') | |
| nlp.add_pipe('sentencizer') | |
| model = whisper.load_model("small") | |
| def inference(audio): | |
| result = model.transcribe(audio) | |
| return result["text"] | |
| def split_in_sentences(text): | |
| doc = nlp(text) | |
| return [str(sent).strip() for sent in doc.sents] | |
| def make_spans(text,results): | |
| results_list = [] | |
| for i in range(len(results)): | |
| results_list.append(results[i]['label']) | |
| facts_spans = [] | |
| facts_spans = list(zip(split_in_sentences(text),results_list)) | |
| return facts_spans | |
| auth_token = os.environ.get("HF_Token") | |
| ##Speech Recognition | |
| asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") | |
| def transcribe(audio): | |
| text = asr(audio)["text"] | |
| return text | |
| def speech_to_text(speech): | |
| text = asr(speech)["text"] | |
| return text | |
| ##Summarization | |
| summarizer = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM") | |
| def summarize_text(text): | |
| resp = summarizer(text) | |
| stext = resp[0]['summary_text'] | |
| return stext | |
| summarizer1 = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") | |
| def summarize_text1(text): | |
| resp = summarizer1(text) | |
| stext = resp[0]['summary_text'] | |
| return stext | |
| summarizer2 = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM-AMI") | |
| def summarize_text2(text): | |
| resp = summarizer2(text) | |
| stext = resp[0]['summary_text'] | |
| return stext | |
| ##Fiscal Tone Analysis | |
| sen_model= pipeline("sentiment-analysis", model='knkarthick/Sentiment-Analysis', tokenizer='knkarthick/Sentiment-Analysis') | |
| def text_to_sentiment(text): | |
| sentiment = sen_model(text)[0]["label"] | |
| return sentiment | |
| ##Fiscal Sentiment by Sentence | |
| def sen_ext(text): | |
| results = sen_model(split_in_sentences(text)) | |
| return make_spans(text,results) | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown("## Meeting Transcript AI Use Cases") | |
| gr.Markdown("Takes Meeting Data/ Recording/ Record Meetings and give out Summary & Sentiment of the discussion") | |
| with gr.Row(): | |
| with gr.Column(): | |
| audio_file = gr.inputs.Audio(source="microphone", type="filepath") | |
| with gr.Row(): | |
| b1 = gr.Button("Recognize Speech") | |
| with gr.Row(): | |
| text = gr.Textbox(label="FB Model", value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.") | |
| b1.click(speech_to_text, inputs=audio_file, outputs=text) | |
| with gr.Row(): | |
| text = gr.Textbox(label="Whisper", value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.") | |
| b1.click(inference, inputs=audio_file, outputs=text) | |
| with gr.Row(): | |
| b2 = gr.Button("Overall Sentiment Analysis of Dialogues") | |
| fin_spans = gr.HighlightedText() | |
| b2.click(sen_ext, inputs=text, outputs=fin_spans) | |
| with gr.Row(): | |
| b3 = gr.Button("Summary Text Outputs") | |
| with gr.Column(): | |
| with gr.Row(): | |
| stext = gr.Textbox(label="Model-I") | |
| b3.click(summarize_text, inputs=text, outputs=stext) | |
| with gr.Column(): | |
| with gr.Row(): | |
| stext1 = gr.Textbox(label="Model-II") | |
| b3.click(summarize_text1, inputs=text, outputs=stext1) | |
| with gr.Column(): | |
| with gr.Row(): | |
| stext2 = gr.Textbox(label="Model-III") | |
| b3.click(summarize_text2, inputs=text, outputs=stext2) | |
| with gr.Row(): | |
| b4 = gr.Button("Sentiment Analysis") | |
| with gr.Column(): | |
| with gr.Row(): | |
| label = gr.Label(label="Sentiment Of Summary-I") | |
| b4.click(text_to_sentiment, inputs=stext, outputs=label) | |
| with gr.Column(): | |
| with gr.Row(): | |
| label1 = gr.Label(label="Sentiment Of Summary-II") | |
| b4.click(text_to_sentiment, inputs=stext1, outputs=label1) | |
| with gr.Column(): | |
| with gr.Row(): | |
| label2 = gr.Label(label="Sentiment Of Summary-III") | |
| b4.click(text_to_sentiment, inputs=stext2, outputs=label2) | |
| with gr.Row(): | |
| b5 = gr.Button("Dialogue Sentiment Analysis") | |
| with gr.Column(): | |
| with gr.Row(): | |
| fin_spans = gr.HighlightedText(label="Sentiment Of Summary-I Dialogues") | |
| b5.click(sen_ext, inputs=stext, outputs=fin_spans) | |
| with gr.Column(): | |
| with gr.Row(): | |
| fin_spans1 = gr.HighlightedText(label="Sentiment Of Summary-II Dialogues") | |
| b5.click(sen_ext, inputs=stext1, outputs=fin_spans1) | |
| with gr.Column(): | |
| with gr.Row(): | |
| fin_spans2 = gr.HighlightedText(label="Sentiment Of Summary-III Dialogues") | |
| b5.click(sen_ext, inputs=stext2, outputs=fin_spans2) | |
| demo.launch() |