Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,142 +1,264 @@
|
|
| 1 |
-
# app.py β Hugging Face Spaces (
|
| 2 |
|
| 3 |
import os
|
|
|
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
from typing import List, Tuple
|
| 7 |
|
| 8 |
-
from peft import PeftConfig, PeftModel
|
| 9 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
|
| 11 |
-
# ββ
|
| 12 |
HF_TOKEN = os.environ.get("HF_TOKEN") # set in Space β Settings β Variables & secrets
|
| 13 |
ADAPTER_ID = "Reubencf/gemma3-goan-finetuned" # your LoRA adapter repo
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
TITLE = "π΄ Gemma Goan Q&A Bot"
|
| 16 |
DESCRIPTION = """
|
| 17 |
Gemma-3-4B-Instruct base + LoRA adapter fine-tuned on a Goan Q&A dataset.
|
| 18 |
Ask about Goa, Konkani culture, or general topics!
|
| 19 |
|
| 20 |
**Adapter**: https://huggingface.co/Reubencf/gemma3-goan-finetuned
|
|
|
|
|
|
|
| 21 |
"""
|
| 22 |
|
| 23 |
-
# ββ Load model + tokenizer (
|
| 24 |
def load_model_and_tokenizer():
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
peft_cfg = PeftConfig.from_pretrained(ADAPTER_ID, token=HF_TOKEN)
|
| 27 |
-
base_id = peft_cfg.base_model_name_or_path
|
| 28 |
-
print(f"[Load]
|
| 29 |
-
|
| 30 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
try:
|
| 32 |
-
model
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
base_id,
|
| 46 |
token=HF_TOKEN,
|
| 47 |
trust_remote_code=True,
|
| 48 |
-
|
| 49 |
low_cpu_mem_usage=True,
|
| 50 |
-
torch_dtype=torch.float32,
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
model = PeftModel.from_pretrained(
|
| 53 |
-
|
| 54 |
ADAPTER_ID,
|
| 55 |
token=HF_TOKEN,
|
| 56 |
trust_remote_code=True,
|
|
|
|
| 57 |
)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
base_id,
|
| 63 |
token=HF_TOKEN,
|
| 64 |
use_fast=True,
|
| 65 |
trust_remote_code=True,
|
| 66 |
)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
| 71 |
model.eval()
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
model
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
conv.append({"role": "user", "content": u})
|
| 83 |
-
if a:
|
| 84 |
-
conv.append({"role": "assistant", "content": a})
|
| 85 |
-
conv.append({"role": "user", "content": message})
|
| 86 |
-
return conv
|
| 87 |
|
|
|
|
| 88 |
def generate_response(
|
| 89 |
-
message,
|
| 90 |
-
history,
|
| 91 |
-
temperature=0.7,
|
| 92 |
-
max_new_tokens=256,
|
| 93 |
-
top_p=0.95,
|
| 94 |
-
repetition_penalty=1.1,
|
| 95 |
-
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
try:
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
)
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
| 104 |
with torch.no_grad():
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
| 108 |
temperature=float(temperature),
|
| 109 |
top_p=float(top_p),
|
| 110 |
repetition_penalty=float(repetition_penalty),
|
| 111 |
do_sample=True,
|
| 112 |
pad_token_id=tokenizer.pad_token_id,
|
| 113 |
eos_token_id=tokenizer.eos_token_id,
|
|
|
|
| 114 |
)
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
except Exception as e:
|
| 120 |
-
return f"Error generating response: {e}"
|
| 121 |
|
| 122 |
-
# ββ Gradio
|
| 123 |
examples = [
|
| 124 |
["What is the capital of Goa?"],
|
| 125 |
-
["Tell me about
|
| 126 |
-
["
|
| 127 |
-
["
|
| 128 |
-
["
|
| 129 |
]
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py β Optimized for Hugging Face Spaces Free Tier (CPU-only)
|
| 2 |
|
| 3 |
import os
|
| 4 |
+
import gc
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
from typing import List, Tuple
|
| 8 |
|
| 9 |
+
from peft import PeftConfig, PeftModel
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 11 |
|
| 12 |
+
# ββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 13 |
HF_TOKEN = os.environ.get("HF_TOKEN") # set in Space β Settings β Variables & secrets
|
| 14 |
ADAPTER_ID = "Reubencf/gemma3-goan-finetuned" # your LoRA adapter repo
|
| 15 |
|
| 16 |
+
# Free tier optimization flags
|
| 17 |
+
USE_8BIT = False # Set to True if you have access to GPU tier
|
| 18 |
+
MAX_MEMORY = "15GB" # Conservative for free tier
|
| 19 |
+
DEVICE = "cpu" # Force CPU for free tier
|
| 20 |
+
|
| 21 |
TITLE = "π΄ Gemma Goan Q&A Bot"
|
| 22 |
DESCRIPTION = """
|
| 23 |
Gemma-3-4B-Instruct base + LoRA adapter fine-tuned on a Goan Q&A dataset.
|
| 24 |
Ask about Goa, Konkani culture, or general topics!
|
| 25 |
|
| 26 |
**Adapter**: https://huggingface.co/Reubencf/gemma3-goan-finetuned
|
| 27 |
+
|
| 28 |
+
β οΈ **Note**: Running on free tier (CPU). Responses may be slower. For faster inference, consider upgrading to GPU tier.
|
| 29 |
"""
|
| 30 |
|
| 31 |
+
# ββ Load model + tokenizer (optimized for free tier) βββββββββββββββββββββββββββ
|
| 32 |
def load_model_and_tokenizer():
|
| 33 |
+
"""Load model with memory optimizations for free tier"""
|
| 34 |
+
|
| 35 |
+
print("[Init] Starting model load for free tier...")
|
| 36 |
+
|
| 37 |
+
# Get the base model ID from adapter config
|
| 38 |
peft_cfg = PeftConfig.from_pretrained(ADAPTER_ID, token=HF_TOKEN)
|
| 39 |
+
base_id = peft_cfg.base_model_name_or_path
|
| 40 |
+
print(f"[Load] Base model: {base_id}")
|
| 41 |
+
|
| 42 |
+
# Memory cleanup before loading
|
| 43 |
+
gc.collect()
|
| 44 |
+
if torch.cuda.is_available():
|
| 45 |
+
torch.cuda.empty_cache()
|
| 46 |
+
|
| 47 |
try:
|
| 48 |
+
# Load base model with memory optimizations
|
| 49 |
+
print("[Load] Loading base model with CPU optimizations...")
|
| 50 |
+
|
| 51 |
+
# Quantization config (only if GPU available and enabled)
|
| 52 |
+
quantization_config = None
|
| 53 |
+
if USE_8BIT and torch.cuda.is_available():
|
| 54 |
+
quantization_config = BitsAndBytesConfig(
|
| 55 |
+
load_in_8bit=True,
|
| 56 |
+
bnb_8bit_compute_dtype=torch.float16
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Load base model
|
| 60 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 61 |
base_id,
|
| 62 |
token=HF_TOKEN,
|
| 63 |
trust_remote_code=True,
|
| 64 |
+
quantization_config=quantization_config,
|
| 65 |
low_cpu_mem_usage=True,
|
| 66 |
+
torch_dtype=torch.float32 if DEVICE == "cpu" else torch.float16,
|
| 67 |
+
device_map=None, # We'll move manually
|
| 68 |
+
max_memory={0: MAX_MEMORY} if torch.cuda.is_available() else None,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Move to device
|
| 72 |
+
if DEVICE == "cpu":
|
| 73 |
+
base_model = base_model.to("cpu")
|
| 74 |
+
print("[Load] Model moved to CPU")
|
| 75 |
+
|
| 76 |
+
# Load and apply LoRA adapter
|
| 77 |
+
print("[Load] Loading LoRA adapter...")
|
| 78 |
model = PeftModel.from_pretrained(
|
| 79 |
+
base_model,
|
| 80 |
ADAPTER_ID,
|
| 81 |
token=HF_TOKEN,
|
| 82 |
trust_remote_code=True,
|
| 83 |
+
is_trainable=False, # Inference only
|
| 84 |
)
|
| 85 |
+
|
| 86 |
+
# Merge adapter with base (reduces memory overhead during inference)
|
| 87 |
+
print("[Load] Merging adapter for efficiency...")
|
| 88 |
+
model = model.merge_and_unload()
|
| 89 |
+
|
| 90 |
+
print("[Load] Model loaded successfully!")
|
| 91 |
+
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print(f"[Error] Failed to load model: {e}")
|
| 94 |
+
raise gr.Error(
|
| 95 |
+
f"Failed to load model. This may be due to memory constraints on free tier. "
|
| 96 |
+
f"Consider using a smaller model or upgrading to GPU tier. Error: {str(e)}"
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Load tokenizer
|
| 100 |
+
print("[Load] Loading tokenizer...")
|
| 101 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 102 |
base_id,
|
| 103 |
token=HF_TOKEN,
|
| 104 |
use_fast=True,
|
| 105 |
trust_remote_code=True,
|
| 106 |
)
|
| 107 |
+
|
| 108 |
+
# Set padding token
|
| 109 |
+
if tokenizer.pad_token is None:
|
| 110 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 111 |
+
tokenizer.padding_side = "left" # Better for generation
|
| 112 |
+
|
| 113 |
+
# Set model to eval mode
|
| 114 |
model.eval()
|
| 115 |
+
|
| 116 |
+
# Memory cleanup
|
| 117 |
+
gc.collect()
|
| 118 |
+
|
| 119 |
+
return model, tokenizer, base_id
|
| 120 |
|
| 121 |
+
# Load model globally (done once at startup)
|
| 122 |
+
try:
|
| 123 |
+
model, tokenizer, BASE_ID = load_model_and_tokenizer()
|
| 124 |
+
MODEL_LOADED = True
|
| 125 |
+
except Exception as e:
|
| 126 |
+
print(f"[Fatal] Could not load model: {e}")
|
| 127 |
+
MODEL_LOADED = False
|
| 128 |
+
model, tokenizer, BASE_ID = None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
# ββ Generation function βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 131 |
def generate_response(
|
| 132 |
+
message: str,
|
| 133 |
+
history: List[Tuple[str, str]],
|
| 134 |
+
temperature: float = 0.7,
|
| 135 |
+
max_new_tokens: int = 256,
|
| 136 |
+
top_p: float = 0.95,
|
| 137 |
+
repetition_penalty: float = 1.1,
|
| 138 |
+
) -> str:
|
| 139 |
+
"""Generate response using the fine-tuned model"""
|
| 140 |
+
|
| 141 |
+
if not MODEL_LOADED:
|
| 142 |
+
return "β οΈ Model failed to load. This usually happens due to memory constraints on the free tier. Please try again later or contact the space owner."
|
| 143 |
+
|
| 144 |
try:
|
| 145 |
+
# Build conversation history
|
| 146 |
+
conversation = []
|
| 147 |
+
for user_msg, assistant_msg in history:
|
| 148 |
+
if user_msg:
|
| 149 |
+
conversation.append({"role": "user", "content": user_msg})
|
| 150 |
+
if assistant_msg:
|
| 151 |
+
conversation.append({"role": "assistant", "content": assistant_msg})
|
| 152 |
+
conversation.append({"role": "user", "content": message})
|
| 153 |
+
|
| 154 |
+
# Apply chat template
|
| 155 |
+
prompt = tokenizer.apply_chat_template(
|
| 156 |
+
conversation,
|
| 157 |
+
add_generation_prompt=True,
|
| 158 |
+
return_tensors="pt"
|
| 159 |
)
|
| 160 |
+
|
| 161 |
+
# Move to model device
|
| 162 |
+
prompt = prompt.to(model.device)
|
| 163 |
+
|
| 164 |
+
# Generate with memory-efficient settings
|
| 165 |
with torch.no_grad():
|
| 166 |
+
# Use cache for faster generation
|
| 167 |
+
outputs = model.generate(
|
| 168 |
+
input_ids=prompt,
|
| 169 |
+
max_new_tokens=min(int(max_new_tokens), 256), # Cap for free tier
|
| 170 |
temperature=float(temperature),
|
| 171 |
top_p=float(top_p),
|
| 172 |
repetition_penalty=float(repetition_penalty),
|
| 173 |
do_sample=True,
|
| 174 |
pad_token_id=tokenizer.pad_token_id,
|
| 175 |
eos_token_id=tokenizer.eos_token_id,
|
| 176 |
+
use_cache=True, # Enable KV cache
|
| 177 |
)
|
| 178 |
+
|
| 179 |
+
# Decode only the generated tokens
|
| 180 |
+
generated_tokens = outputs[0][prompt.shape[-1]:]
|
| 181 |
+
response = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
| 182 |
+
|
| 183 |
+
# Memory cleanup after generation
|
| 184 |
+
del outputs, prompt, generated_tokens
|
| 185 |
+
gc.collect()
|
| 186 |
+
|
| 187 |
+
return response
|
| 188 |
+
|
| 189 |
+
except torch.cuda.OutOfMemoryError:
|
| 190 |
+
gc.collect()
|
| 191 |
+
torch.cuda.empty_cache()
|
| 192 |
+
return "β οΈ Out of memory. Try reducing max_new_tokens or restarting the space."
|
| 193 |
except Exception as e:
|
| 194 |
+
return f"β οΈ Error generating response: {str(e)}"
|
| 195 |
|
| 196 |
+
# ββ Gradio Interface ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 197 |
examples = [
|
| 198 |
["What is the capital of Goa?"],
|
| 199 |
+
["Tell me about Konkani language"],
|
| 200 |
+
["What are the famous beaches in Goa?"],
|
| 201 |
+
["Describe Goan fish curry"],
|
| 202 |
+
["What is the history of Old Goa?"],
|
| 203 |
]
|
| 204 |
|
| 205 |
+
# Create the chat interface
|
| 206 |
+
if MODEL_LOADED:
|
| 207 |
+
demo = gr.ChatInterface(
|
| 208 |
+
fn=generate_response,
|
| 209 |
+
title=TITLE,
|
| 210 |
+
description=DESCRIPTION,
|
| 211 |
+
examples=examples,
|
| 212 |
+
retry_btn=None, # Disable retry to save memory
|
| 213 |
+
undo_btn=None, # Disable undo to save memory
|
| 214 |
+
additional_inputs=[
|
| 215 |
+
gr.Slider(
|
| 216 |
+
minimum=0.1,
|
| 217 |
+
maximum=1.0,
|
| 218 |
+
value=0.7,
|
| 219 |
+
step=0.05,
|
| 220 |
+
label="Temperature (lower = more focused)"
|
| 221 |
+
),
|
| 222 |
+
gr.Slider(
|
| 223 |
+
minimum=32,
|
| 224 |
+
maximum=256,
|
| 225 |
+
value=128, # Reduced default for free tier
|
| 226 |
+
step=16,
|
| 227 |
+
label="Max new tokens"
|
| 228 |
+
),
|
| 229 |
+
gr.Slider(
|
| 230 |
+
minimum=0.1,
|
| 231 |
+
maximum=1.0,
|
| 232 |
+
value=0.95,
|
| 233 |
+
step=0.05,
|
| 234 |
+
label="Top-p (nucleus sampling)"
|
| 235 |
+
),
|
| 236 |
+
gr.Slider(
|
| 237 |
+
minimum=1.0,
|
| 238 |
+
maximum=2.0,
|
| 239 |
+
value=1.1,
|
| 240 |
+
step=0.05,
|
| 241 |
+
label="Repetition penalty"
|
| 242 |
+
),
|
| 243 |
+
],
|
| 244 |
+
theme=gr.themes.Soft(),
|
| 245 |
+
)
|
| 246 |
+
else:
|
| 247 |
+
# Fallback interface if model fails to load
|
| 248 |
+
demo = gr.Interface(
|
| 249 |
+
fn=lambda x: "β οΈ Model failed to load. Please check the logs or try restarting the space.",
|
| 250 |
+
inputs=gr.Textbox(label="Message"),
|
| 251 |
+
outputs=gr.Textbox(label="Response"),
|
| 252 |
+
title=TITLE,
|
| 253 |
+
description="**Error**: Model could not be loaded. This is likely due to memory constraints on the free tier.",
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
# Queue for handling multiple users
|
| 257 |
+
demo.queue(
|
| 258 |
+
concurrency_count=1, # Process one at a time to save memory
|
| 259 |
+
max_size=10, # Reduced queue size for free tier
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Launch the app
|
| 263 |
+
if __name__ == "__main__":
|
| 264 |
+
demo.launch()
|