Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,299 +1,111 @@
|
|
| 1 |
-
# app.py β Hugging Face
|
|
|
|
|
|
|
|
|
|
| 2 |
# ---------------------------------------------------------------
|
| 3 |
-
# What changed vs your script
|
| 4 |
-
# - Removed ChatInterface args that broke on old Gradio (retry_btn, undo_btn)
|
| 5 |
-
# - No interactive input() for merging (Spaces are non-interactive). Use MERGE_LORA env var.
|
| 6 |
-
# - Secrets: read HF token from env (Settings β Secrets β HF_TOKEN), never hardcode.
|
| 7 |
-
# - Token passing works across transformers/peft versions (token/use_auth_token fallback).
|
| 8 |
-
# - Optional 8-bit via USE_8BIT=1 (GPU only). Safe CPU defaults.
|
| 9 |
-
# - Robust theme/queue/launch for mixed Gradio versions.
|
| 10 |
-
|
| 11 |
import os
|
| 12 |
-
import gc
|
| 13 |
-
import warnings
|
| 14 |
-
from typing import List, Tuple
|
| 15 |
-
|
| 16 |
import torch
|
| 17 |
import gradio as gr
|
| 18 |
-
|
| 19 |
-
warnings.filterwarnings("ignore")
|
| 20 |
-
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 21 |
-
|
| 22 |
-
try:
|
| 23 |
-
from peft import PeftConfig, PeftModel
|
| 24 |
-
from transformers import (
|
| 25 |
-
AutoTokenizer,
|
| 26 |
-
AutoModelForCausalLM,
|
| 27 |
-
BitsAndBytesConfig,
|
| 28 |
-
)
|
| 29 |
-
IMPORTS_OK = True
|
| 30 |
-
except Exception as e:
|
| 31 |
-
IMPORTS_OK = False
|
| 32 |
-
print(f"Missing dependencies: {e}")
|
| 33 |
-
print("Install: pip install --upgrade 'transformers>=4.41' peft accelerate gradio torch bitsandbytes")
|
| 34 |
|
| 35 |
# ββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
ADAPTER_ID = os.getenv("ADAPTER_ID", "Reubencf/gemma3-goan-finetuned")
|
| 40 |
-
|
| 41 |
-
# Base model used during fine-tuning (should match adapter's base)
|
| 42 |
-
BASE_MODEL_ID_DEFAULT = os.getenv("BASE_MODEL_ID", "google/gemma-3-4b-it")
|
| 43 |
-
|
| 44 |
-
# Quantization toggle (GPU only): set USE_8BIT=1 in Space variables
|
| 45 |
-
USE_8BIT = os.getenv("USE_8BIT", "0").lower() in {"1", "true", "yes", "y"}
|
| 46 |
-
|
| 47 |
-
# Merge LoRA into the base for faster inference: MERGE_LORA=1/0
|
| 48 |
-
MERGE_LORA = os.getenv("MERGE_LORA", "1").lower() in {"1", "true", "yes", "y"}
|
| 49 |
|
| 50 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 51 |
-
|
| 52 |
TITLE = "π΄ Gemma Goan Q&A Bot"
|
| 53 |
-
|
| 54 |
-
"
|
| 55 |
-
"Ask about Goa, Konkani culture, or general topics
|
| 56 |
-
"**Status**: {}"
|
| 57 |
)
|
| 58 |
|
| 59 |
-
# ββ
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
if HF_TOKEN:
|
| 65 |
-
try:
|
| 66 |
-
return fn(*args, token=HF_TOKEN, **kwargs)
|
| 67 |
-
except TypeError:
|
| 68 |
-
return fn(*args, use_auth_token=HF_TOKEN, **kwargs)
|
| 69 |
-
return fn(*args, **kwargs)
|
| 70 |
-
|
| 71 |
-
# ββ Load model + tokenizer βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 72 |
-
|
| 73 |
-
def load_model_and_tokenizer():
|
| 74 |
-
if not IMPORTS_OK:
|
| 75 |
-
raise ImportError("Required packages not installed.")
|
| 76 |
-
|
| 77 |
-
print("[Init] Starting model loadβ¦")
|
| 78 |
-
print(f"[Config] Device: {DEVICE}")
|
| 79 |
-
|
| 80 |
-
# GC + VRAM cleanup
|
| 81 |
-
gc.collect()
|
| 82 |
-
if torch.cuda.is_available():
|
| 83 |
-
torch.cuda.empty_cache()
|
| 84 |
-
|
| 85 |
-
# Step 1: Confirm base model from the adapter's config if possible
|
| 86 |
-
actual_base_model = BASE_MODEL_ID_DEFAULT
|
| 87 |
-
try:
|
| 88 |
-
print(f"[Load] Reading adapter config: {ADAPTER_ID}")
|
| 89 |
-
peft_cfg = call_with_token(PeftConfig.from_pretrained, ADAPTER_ID)
|
| 90 |
-
if getattr(peft_cfg, "base_model_name_or_path", None):
|
| 91 |
-
actual_base_model = peft_cfg.base_model_name_or_path
|
| 92 |
-
print(f"[Load] Adapter expects base model: {actual_base_model}")
|
| 93 |
-
else:
|
| 94 |
-
print("[Warn] Adapter did not expose base_model_name_or_path; using configured base.")
|
| 95 |
-
except Exception as e:
|
| 96 |
-
print(f"[Warn] Could not read adapter config ({e}); using configured base: {actual_base_model}")
|
| 97 |
-
|
| 98 |
-
# Step 2: Load base model (optionally quantized on GPU)
|
| 99 |
-
print(f"[Load] Loading base model: {actual_base_model}")
|
| 100 |
-
quant_cfg = None
|
| 101 |
-
if USE_8BIT and torch.cuda.is_available():
|
| 102 |
-
print("[Load] Enabling 8-bit quantization (bitsandbytes)")
|
| 103 |
-
quant_cfg = BitsAndBytesConfig(load_in_8bit=True, bnb_8bit_compute_dtype=torch.float16)
|
| 104 |
-
|
| 105 |
-
base_model = call_with_token(
|
| 106 |
-
AutoModelForCausalLM.from_pretrained,
|
| 107 |
-
actual_base_model,
|
| 108 |
-
trust_remote_code=True,
|
| 109 |
-
quantization_config=quant_cfg,
|
| 110 |
-
low_cpu_mem_usage=True,
|
| 111 |
-
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
| 112 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
if DEVICE == "cpu" and not torch.cuda.is_available():
|
| 116 |
-
base_model = base_model.to("cpu")
|
| 117 |
-
print("[Load] Model on CPU")
|
| 118 |
-
|
| 119 |
-
print("[Load] Base model loaded β")
|
| 120 |
-
|
| 121 |
-
# Step 3: Tokenizer
|
| 122 |
-
print("[Load] Loading tokenizerβ¦")
|
| 123 |
-
tokenizer = call_with_token(
|
| 124 |
-
AutoTokenizer.from_pretrained,
|
| 125 |
-
actual_base_model,
|
| 126 |
-
use_fast=True,
|
| 127 |
-
trust_remote_code=True,
|
| 128 |
-
)
|
| 129 |
-
if tokenizer.pad_token is None:
|
| 130 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 131 |
-
tokenizer.padding_side = "left"
|
| 132 |
-
|
| 133 |
-
# Step 4: Apply LoRA adapter
|
| 134 |
-
status = ""
|
| 135 |
-
model = base_model
|
| 136 |
-
try:
|
| 137 |
-
print(f"[Load] Applying LoRA adapter: {ADAPTER_ID}")
|
| 138 |
-
model = call_with_token(PeftModel.from_pretrained, base_model, ADAPTER_ID)
|
| 139 |
-
|
| 140 |
-
if MERGE_LORA:
|
| 141 |
-
print("[Load] Merging adapter into base (merge_and_unload)β¦")
|
| 142 |
-
model = model.merge_and_unload()
|
| 143 |
-
status = f"β
Using fine-tuned model (merged): {ADAPTER_ID}"
|
| 144 |
-
else:
|
| 145 |
-
status = f"β
Using fine-tuned model via adapter: {ADAPTER_ID}"
|
| 146 |
-
except FileNotFoundError as e:
|
| 147 |
-
print(f"[Error] Adapter files not found: {e}")
|
| 148 |
-
status = f"β οΈ Adapter not found. Using base only: {actual_base_model}"
|
| 149 |
-
except Exception as e:
|
| 150 |
-
print(f"[Error] Failed to load adapter: {e}")
|
| 151 |
-
status = f"β οΈ Could not load adapter. Using base only: {actual_base_model}"
|
| 152 |
-
|
| 153 |
-
model.eval()
|
| 154 |
-
print(f"[Load] Model ready on {DEVICE} β")
|
| 155 |
-
|
| 156 |
-
gc.collect()
|
| 157 |
-
if torch.cuda.is_available():
|
| 158 |
-
torch.cuda.empty_cache()
|
| 159 |
-
|
| 160 |
-
return model, tokenizer, status
|
| 161 |
-
|
| 162 |
-
# Global load at import time (Space-friendly)
|
| 163 |
try:
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
MODEL_LOADED = True
|
| 166 |
-
|
| 167 |
except Exception as e:
|
| 168 |
-
print(f"[Fatal] Could not load model: {e}")
|
| 169 |
MODEL_LOADED = False
|
| 170 |
-
|
| 171 |
-
|
| 172 |
|
| 173 |
-
# ββ Generation ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
) -> str:
|
| 183 |
if not MODEL_LOADED:
|
| 184 |
-
return "β οΈ Model
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
except Exception as e:
|
| 205 |
-
print(f"[Warn] chat_template failed: {e}; using manual format")
|
| 206 |
-
prompt_text = "".join(
|
| 207 |
-
[
|
| 208 |
-
("User: " + m["content"] + "\n") if m["role"] == "user" else ("Assistant: " + m["content"] + "\n")
|
| 209 |
-
for m in conversation
|
| 210 |
-
]
|
| 211 |
-
) + "Assistant: "
|
| 212 |
-
input_ids = tokenizer(prompt_text, return_tensors="pt", truncation=True, max_length=1024).input_ids
|
| 213 |
-
|
| 214 |
-
input_ids = input_ids.to(model.device if hasattr(model, "device") else DEVICE)
|
| 215 |
-
|
| 216 |
-
with torch.no_grad():
|
| 217 |
-
out = model.generate(
|
| 218 |
-
input_ids=input_ids,
|
| 219 |
-
max_new_tokens=max(1, min(int(max_new_tokens), 512)),
|
| 220 |
-
temperature=float(temperature),
|
| 221 |
-
top_p=float(top_p),
|
| 222 |
-
repetition_penalty=float(repetition_penalty),
|
| 223 |
-
do_sample=True,
|
| 224 |
-
pad_token_id=tokenizer.pad_token_id,
|
| 225 |
-
eos_token_id=tokenizer.eos_token_id,
|
| 226 |
-
use_cache=True,
|
| 227 |
-
)
|
| 228 |
-
|
| 229 |
-
gen = out[0][input_ids.shape[-1]:]
|
| 230 |
-
text = tokenizer.decode(gen, skip_special_tokens=True).strip()
|
| 231 |
-
|
| 232 |
-
# Cleanup
|
| 233 |
-
del out, input_ids, gen
|
| 234 |
-
gc.collect()
|
| 235 |
-
if torch.cuda.is_available():
|
| 236 |
-
torch.cuda.empty_cache()
|
| 237 |
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
|
| 241 |
-
gc.collect()
|
| 242 |
-
if torch.cuda.is_available():
|
| 243 |
-
torch.cuda.empty_cache()
|
| 244 |
-
return f"β οΈ Error generating response: {e}"
|
| 245 |
|
| 246 |
# ββ UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
| 247 |
examples = [
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
["What is the history of Old Goa?", 0.7, 256, 0.95, 1.1],
|
| 253 |
]
|
| 254 |
|
| 255 |
-
#
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
fn=generate_response,
|
| 264 |
-
title=TITLE,
|
| 265 |
-
description=DESCRIPTION,
|
| 266 |
-
examples=examples,
|
| 267 |
-
additional_inputs=[
|
| 268 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Temperature"),
|
| 269 |
-
gr.Slider(minimum=32, maximum=512, value=256, step=16, label="Max new tokens"),
|
| 270 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
| 271 |
-
gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.05, label="Repetition penalty"),
|
| 272 |
-
],
|
| 273 |
-
theme=THEME,
|
| 274 |
-
)
|
| 275 |
-
else:
|
| 276 |
-
demo = gr.Interface(
|
| 277 |
-
fn=lambda x: "Model failed to load. Check Space logs.",
|
| 278 |
-
inputs=gr.Textbox(label="Message"),
|
| 279 |
-
outputs=gr.Textbox(label="Response"),
|
| 280 |
-
title=TITLE,
|
| 281 |
-
description=DESCRIPTION,
|
| 282 |
-
theme=THEME,
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
# Queue β keep params minimal for cross-version compat
|
| 286 |
-
try:
|
| 287 |
-
demo.queue()
|
| 288 |
-
except Exception:
|
| 289 |
-
pass
|
| 290 |
|
|
|
|
| 291 |
if __name__ == "__main__":
|
| 292 |
-
print("
|
| 293 |
-
print(f"π Starting Gradio app on {DEVICE} β¦")
|
| 294 |
-
print(f"π Base model: {BASE_MODEL_ID_DEFAULT}")
|
| 295 |
-
print(f"π§ LoRA adapter: {ADAPTER_ID}")
|
| 296 |
-
print(f"π§© Merge LoRA: {MERGE_LORA}")
|
| 297 |
-
print("=" * 60 + "\n")
|
| 298 |
-
# On Spaces, just calling launch() is fine.
|
| 299 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py β Simplified for Hugging Face Spaces
|
| 2 |
+
# ---------------------------------------------------------------
|
| 3 |
+
# This version uses the high-level `pipeline` from transformers
|
| 4 |
+
# for a much simpler and cleaner implementation.
|
| 5 |
# ---------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import torch
|
| 8 |
import gradio as gr
|
| 9 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# ββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 12 |
+
# Set the model repository ID
|
| 13 |
+
MODEL_ID = "Reubencf/gemma3-goan-finetuned"
|
| 14 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Optional: for private models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 17 |
TITLE = "π΄ Gemma Goan Q&A Bot"
|
| 18 |
+
DESCRIPTION = (
|
| 19 |
+
"This is a simple Gradio chat interface for the Gemma model fine-tuned on a Goan Q&A dataset.\n"
|
| 20 |
+
"Ask about Goa, Konkani culture, or general topics!"
|
|
|
|
| 21 |
)
|
| 22 |
|
| 23 |
+
# ββ Load Model Pipeline βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 24 |
+
# We load the model and tokenizer into a pipeline object.
|
| 25 |
+
# This is done only once when the app starts.
|
| 26 |
+
# `device_map="auto"` ensures the model is placed on a GPU if available.
|
| 27 |
+
print(f"[Init] Loading model pipeline: {MODEL_ID} on {DEVICE}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
try:
|
| 29 |
+
pipe = pipeline(
|
| 30 |
+
"text-generation",
|
| 31 |
+
model=MODEL_ID,
|
| 32 |
+
torch_dtype=torch.bfloat16, # Use bfloat16 for better performance
|
| 33 |
+
device_map="auto",
|
| 34 |
+
token=HF_TOKEN,
|
| 35 |
+
)
|
| 36 |
MODEL_LOADED = True
|
| 37 |
+
print("[Init] Model pipeline loaded successfully.")
|
| 38 |
except Exception as e:
|
|
|
|
| 39 |
MODEL_LOADED = False
|
| 40 |
+
DESCRIPTION = f"β Model failed to load: {e}"
|
| 41 |
+
print(f"[Fatal] Could not load model: {e}")
|
| 42 |
|
|
|
|
| 43 |
|
| 44 |
+
# ββ Generation Function ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 45 |
+
def generate_response(message, history):
|
| 46 |
+
"""
|
| 47 |
+
This function is called for each user message.
|
| 48 |
+
It takes the user's message and the conversation history,
|
| 49 |
+
formats them for the model, and returns the model's response.
|
| 50 |
+
"""
|
|
|
|
| 51 |
if not MODEL_LOADED:
|
| 52 |
+
return "β οΈ Model is not available. Please check the Space logs for errors."
|
| 53 |
+
|
| 54 |
+
# Format the conversation history into the format expected by the model
|
| 55 |
+
# The model expects a list of dictionaries with "role" and "content" keys
|
| 56 |
+
conversation = []
|
| 57 |
+
for user_msg, assistant_msg in history:
|
| 58 |
+
conversation.append({"role": "user", "content": user_msg})
|
| 59 |
+
if assistant_msg:
|
| 60 |
+
conversation.append({"role": "assistant", "content": assistant_msg})
|
| 61 |
+
|
| 62 |
+
# Add the current user's message
|
| 63 |
+
conversation.append({"role": "user", "content": message})
|
| 64 |
+
|
| 65 |
+
# Use the pipeline's tokenizer to apply the chat template
|
| 66 |
+
# This correctly formats the input for the conversational model
|
| 67 |
+
prompt = pipe.tokenizer.apply_chat_template(
|
| 68 |
+
conversation,
|
| 69 |
+
tokenize=False,
|
| 70 |
+
add_generation_prompt=True
|
| 71 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
# Generate the response using the pipeline
|
| 74 |
+
outputs = pipe(
|
| 75 |
+
prompt,
|
| 76 |
+
do_sample=True,
|
| 77 |
+
temperature=0.7,
|
| 78 |
+
top_k=50,
|
| 79 |
+
top_p=0.95
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# The pipeline output includes the entire conversation history (prompt).
|
| 83 |
+
# We need to extract only the newly generated text from the assistant.
|
| 84 |
+
response = outputs[0]["generated_text"]
|
| 85 |
+
# Slice the response to get only the new part
|
| 86 |
+
new_response = response[len(prompt):].strip()
|
| 87 |
|
| 88 |
+
return new_response
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
# ββ UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 91 |
+
# Define some example questions to display in the UI
|
| 92 |
examples = [
|
| 93 |
+
"What is bebinca?",
|
| 94 |
+
"Tell me about the history of Feni.",
|
| 95 |
+
"Suggest a good, quiet beach in South Goa.",
|
| 96 |
+
"Describe Goan fish curry.",
|
|
|
|
| 97 |
]
|
| 98 |
|
| 99 |
+
# Create the Gradio ChatInterface
|
| 100 |
+
demo = gr.ChatInterface(
|
| 101 |
+
fn=generate_response,
|
| 102 |
+
title=TITLE,
|
| 103 |
+
description=DESCRIPTION,
|
| 104 |
+
examples=examples,
|
| 105 |
+
theme="soft",
|
| 106 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
# ββ Launch ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 109 |
if __name__ == "__main__":
|
| 110 |
+
print("π Starting Gradio app...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
demo.launch()
|