Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import torchaudio | |
| from seamless_communication.models.inference.translator import Translator | |
| DESCRIPTION = "# SeamlessM4T" | |
| with open("./mlg_config.json", "r") as f: | |
| lang_idx_map = json.loads(f.read()) | |
| LANGUAGES = lang_idx_map["multilingual"].keys() | |
| TASK_NAMES = [ | |
| "S2ST (Speech to Speech translation)", | |
| "S2TT (Speech to Text translation)", | |
| "T2ST (Text to Speech translation)", | |
| "T2TT (Text to Text translation)", | |
| "ASR (Automatic Speech Recognition)", | |
| ] | |
| AUDIO_SAMPLE_RATE = 16000.0 | |
| MAX_INPUT_AUDIO_LENGTH = 60 # in seconds | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| translator = Translator( | |
| model_name_or_card="multitask_unity_large", | |
| vocoder_name_or_card="vocoder_36langs", | |
| device=device, | |
| sample_rate=AUDIO_SAMPLE_RATE, | |
| ) | |
| def predict( | |
| task_name: str, | |
| audio_source: str, | |
| input_audio_mic: str, | |
| input_audio_file: str, | |
| input_text: str, | |
| source_language: str, | |
| target_language: str, | |
| ) -> tuple[tuple[int, np.ndarray] | None, str]: | |
| task_name = task_name.split()[0] | |
| if task_name in ["S2ST", "S2TT", "ASR"]: | |
| if audio_source == "microphone": | |
| input_data = input_audio_mic | |
| else: | |
| input_data = input_audio_file | |
| arr, org_sr = torchaudio.load(input_data) | |
| new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE) | |
| max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE) | |
| if new_arr.shape[1] > max_length: | |
| new_arr = new_arr[:, :max_length] | |
| gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.") | |
| torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE)) | |
| else: | |
| input_data = input_text | |
| text_out, wav, sr = translator.predict( | |
| input=input_data, | |
| task_str=task_name, | |
| tgt_lang=target_language, | |
| src_lang=source_language, | |
| ) | |
| if task_name in ["S2ST", "T2ST"]: | |
| return (sr, wav.cpu().detach().numpy()), text_out | |
| else: | |
| return None, text_out | |
| def update_audio_ui(audio_source: str) -> tuple[dict, dict]: | |
| mic = audio_source == "microphone" | |
| return ( | |
| gr.update(visible=mic, value=None), # input_audio_mic | |
| gr.update(visible=not mic, value=None), # input_audio_file | |
| ) | |
| def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]: | |
| task_name = task_name.split()[0] | |
| if task_name in ["S2ST", "S2TT"]: | |
| return ( | |
| gr.update(visible=True), # audio_box | |
| gr.update(visible=False), # input_text | |
| gr.update(visible=False), # source_language | |
| gr.update(visible=True), # target_language | |
| ) | |
| elif task_name in ["T2ST", "T2TT"]: | |
| return ( | |
| gr.update(visible=False), # audio_box | |
| gr.update(visible=True), # input_text | |
| gr.update(visible=True), # source_language | |
| gr.update(visible=True), # target_language | |
| ) | |
| elif task_name == "ASR": | |
| return ( | |
| gr.update(visible=True), # audio_box | |
| gr.update(visible=False), # input_text | |
| gr.update(visible=False), # source_language | |
| gr.update(visible=True), # target_language | |
| ) | |
| else: | |
| raise ValueError(f"Unknown task: {task_name}") | |
| def update_output_ui(task_name: str) -> tuple[dict, dict]: | |
| task_name = task_name.split()[0] | |
| if task_name in ["S2ST", "T2ST"]: | |
| return ( | |
| gr.update(visible=True, value=None), # output_audio | |
| gr.update(value=None), # output_text | |
| ) | |
| elif task_name in ["S2TT", "T2TT", "ASR"]: | |
| return ( | |
| gr.update(visible=False, value=None), # output_audio | |
| gr.update(value=None), # output_text | |
| ) | |
| else: | |
| raise ValueError(f"Unknown task: {task_name}") | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| gr.DuplicateButton( | |
| value="Duplicate Space for private use", | |
| elem_id="duplicate-button", | |
| visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
| ) | |
| with gr.Group(): | |
| task_name = gr.Dropdown( | |
| label="Task", | |
| choices=TASK_NAMES, | |
| value=TASK_NAMES[0], | |
| ) | |
| with gr.Row(): | |
| source_language = gr.Dropdown( | |
| label="Source language", | |
| choices=LANGUAGES, | |
| value="eng", | |
| visible=False, | |
| ) | |
| target_language = gr.Dropdown( | |
| label="Target language", | |
| choices=LANGUAGES, | |
| value="fra", | |
| ) | |
| with gr.Row() as audio_box: | |
| audio_source = gr.Radio( | |
| label="Audio source", | |
| choices=["file", "microphone"], | |
| value="file", | |
| ) | |
| input_audio_mic = gr.Audio( | |
| label="Input speech", | |
| type="filepath", | |
| source="microphone", | |
| visible=False, | |
| ) | |
| input_audio_file = gr.Audio( | |
| label="Input speech", | |
| type="filepath", | |
| source="upload", | |
| visible=True, | |
| ) | |
| input_text = gr.Textbox(label="Input text", visible=False) | |
| btn = gr.Button("Translate") | |
| with gr.Column(): | |
| output_audio = gr.Audio( | |
| label="Translated speech", | |
| autoplay=False, | |
| streaming=False, | |
| type="numpy", | |
| ) | |
| output_text = gr.Textbox(label="Translated text") | |
| audio_source.change( | |
| fn=update_audio_ui, | |
| inputs=audio_source, | |
| outputs=[ | |
| input_audio_mic, | |
| input_audio_file, | |
| ], | |
| queue=False, | |
| api_name=False, | |
| ) | |
| task_name.change( | |
| fn=update_input_ui, | |
| inputs=task_name, | |
| outputs=[ | |
| audio_box, | |
| input_text, | |
| source_language, | |
| target_language, | |
| ], | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=update_output_ui, | |
| inputs=task_name, | |
| outputs=[output_audio, output_text], | |
| queue=False, | |
| api_name=False, | |
| ) | |
| btn.click( | |
| fn=predict, | |
| inputs=[ | |
| task_name, | |
| audio_source, | |
| input_audio_mic, | |
| input_audio_file, | |
| input_text, | |
| source_language, | |
| target_language, | |
| ], | |
| outputs=[output_audio, output_text], | |
| api_name="run", | |
| ) | |
| demo.queue(max_size=50).launch() | |