Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,70 @@
|
|
| 1 |
-
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
return
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
)
|
| 19 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
# from transformers import pipeline
|
| 2 |
+
# import gradio as gr
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# chatbot = pipeline("text-generation", model="unsloth/DeepSeek-R1-GGUF", trust_remote_code=True)
|
| 6 |
+
|
| 7 |
+
# def chat_with_bot(user_input):
|
| 8 |
+
# # Generate a response from the chatbot model
|
| 9 |
+
# response = chatbot(user_input)
|
| 10 |
+
# return response[0]['generated_text']
|
| 11 |
+
|
| 12 |
+
# interface = gr.Interface(
|
| 13 |
+
# fn=chat_with_bot, # Function to call for processing the input
|
| 14 |
+
# inputs=gr.Textbox(label="Enter your message"), # User input (text)
|
| 15 |
+
# outputs=gr.Textbox(label="Chatbot Response", lines=10), # Model output (text)
|
| 16 |
+
# title="Chat with DeepSeek", # Optional: Add a title to your interface
|
| 17 |
+
# description="Chat with an AI model powered by DeepSeek!" # Optional: Add a description
|
| 18 |
+
# )
|
| 19 |
+
# interface.launch()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 24 |
import gradio as gr
|
| 25 |
|
| 26 |
+
# Load the model and tokenizer from Hugging Face
|
| 27 |
+
model_name = "unsloth/Llama-3.2-3B-Instruct" # Replace with your model
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 29 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 30 |
|
| 31 |
+
# Function to generate text
|
| 32 |
+
def generate_text(input_text, max_length=100, temperature=0.7, top_p=0.9):
|
| 33 |
+
# Tokenize the input text
|
| 34 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 35 |
+
|
| 36 |
+
# Generate text using the model
|
| 37 |
+
outputs = model.generate(
|
| 38 |
+
inputs["input_ids"],
|
| 39 |
+
max_length=max_length,
|
| 40 |
+
temperature=temperature,
|
| 41 |
+
top_p=top_p,
|
| 42 |
+
num_return_sequences=1,
|
| 43 |
+
no_repeat_ngram_size=2,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Decode the generated text
|
| 47 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 48 |
+
return generated_text
|
| 49 |
|
| 50 |
+
# Gradio Interface
|
| 51 |
+
def gradio_interface(input_text, max_length, temperature, top_p):
|
| 52 |
+
generated_text = generate_text(input_text, max_length, temperature, top_p)
|
| 53 |
+
return generated_text
|
| 54 |
|
| 55 |
+
# Create the Gradio app
|
| 56 |
+
app = gr.Interface(
|
| 57 |
+
fn=gradio_interface, # Function to call
|
| 58 |
+
inputs=[
|
| 59 |
+
gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Input Prompt"),
|
| 60 |
+
gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Length"),
|
| 61 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
| 62 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (Nucleus Sampling)"),
|
| 63 |
+
],
|
| 64 |
+
outputs=gr.Textbox(lines=10, label="Generated Text"),
|
| 65 |
+
title="Text Generation with Hugging Face Transformers",
|
| 66 |
+
description="Generate text using a Hugging Face model.",
|
| 67 |
)
|
| 68 |
+
|
| 69 |
+
# Launch the app
|
| 70 |
+
app.launch()
|