kristaller486 commited on
Commit
0f1abde
·
verified ·
1 Parent(s): d84aca2

add Qwen/Qwen3-235B-A22B-Instruct-2507 (Vertex AI API)

Browse files
Files changed (1) hide show
  1. index.html +62 -26
index.html CHANGED
@@ -310,8 +310,44 @@
310
  <td class="num mono" data-label="Всего токенов">101,336</td>
311
  </tr>
312
 
313
- <tr data-model="openai/mistralai/Mistral-Small-3.2-24B-Instruct-2506">
314
  <td class="rank mono sticky-0" data-label="#">#7</td>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315
  <td class="model-name sticky-1" data-label="Модель">Mistral-Small-3.2-24B-Instruct-2506 (vllm)</td>
316
  <td class="num mono" data-label="Критичные/1000">
317
 
@@ -347,7 +383,7 @@
347
  </tr>
348
 
349
  <tr data-model="openrouter/deepseek/deepseek-chat">
350
- <td class="rank mono sticky-0" data-label="#">#8</td>
351
  <td class="model-name sticky-1" data-label="Модель">DeepSeek V3 (Novita API)</td>
352
  <td class="num mono" data-label="Критичные/1000">
353
 
@@ -383,7 +419,7 @@
383
  </tr>
384
 
385
  <tr data-model="openai/RefalMachine/RuadaptQwen3-32B-Instruct">
386
- <td class="rank mono sticky-0" data-label="#">#9</td>
387
  <td class="model-name sticky-1" data-label="Модель">RefalMachine/RuadaptQwen3-32B-Instruct (SGLang)</td>
388
  <td class="num mono" data-label="Критичные/1000">
389
 
@@ -419,7 +455,7 @@
419
  </tr>
420
 
421
  <tr data-model="openai/yandex/YandexGPT-5-Lite-8B-instruct">
422
- <td class="rank mono sticky-0" data-label="#">#10</td>
423
  <td class="model-name sticky-1" data-label="Модель">yandex/YandexGPT-5-Lite-8B-instruct (SGLang)</td>
424
  <td class="num mono" data-label="Критичные/1000">
425
 
@@ -455,7 +491,7 @@
455
  </tr>
456
 
457
  <tr data-model="openrouter/anthropic/claude-haiku-4.5">
458
- <td class="rank mono sticky-0" data-label="#">#11</td>
459
  <td class="model-name sticky-1" data-label="Модель">Claude Haiku 4.5</td>
460
  <td class="num mono" data-label="Критичные/1000">
461
 
@@ -491,7 +527,7 @@
491
  </tr>
492
 
493
  <tr data-model="openai/Qwen/Qwen3-VL-32B-Instruct">
494
- <td class="rank mono sticky-0" data-label="#">#12</td>
495
  <td class="model-name sticky-1" data-label="Модель">Qwen3-VL-32B-Instruct (SGLang)</td>
496
  <td class="num mono" data-label="Критичные/1000">
497
 
@@ -527,7 +563,7 @@
527
  </tr>
528
 
529
  <tr data-model="openai/AvitoTech/avibe">
530
- <td class="rank mono sticky-0" data-label="#">#13</td>
531
  <td class="model-name sticky-1" data-label="Модель">AvitoTech/avibe</td>
532
  <td class="num mono" data-label="Критичные/1000">
533
 
@@ -563,7 +599,7 @@
563
  </tr>
564
 
565
  <tr data-model="openai/ai-sage/GigaChat-20B-A3B-instruct-v1.5-bf16">
566
- <td class="rank mono sticky-0" data-label="#">#14</td>
567
  <td class="model-name sticky-1" data-label="Модель">GigaChat-20B-A3B-instruct-v1.5 (SGLang)</td>
568
  <td class="num mono" data-label="Критичные/1000">
569
 
@@ -599,7 +635,7 @@
599
  </tr>
600
 
601
  <tr data-model="litellm_proxy/deepseek-v3">
602
- <td class="rank mono sticky-0" data-label="#">#15</td>
603
  <td class="model-name sticky-1" data-label="Модель">Deepseek V3.2-Exp (Deepseek API)</td>
604
  <td class="num mono" data-label="Критичные/1000">
605
 
@@ -635,7 +671,7 @@
635
  </tr>
636
 
637
  <tr data-model="openrouter/qwen/qwen3-next-80b-a3b-instruct">
638
- <td class="rank mono sticky-0" data-label="#">#16</td>
639
  <td class="model-name sticky-1" data-label="Модель">Qwen3-Next-80B-A3B-Instruct (Alibaba API)</td>
640
  <td class="num mono" data-label="Критичные/1000">
641
 
@@ -671,7 +707,7 @@
671
  </tr>
672
 
673
  <tr data-model="openrouter/baidu/ernie-4.5-300b-a47b">
674
- <td class="rank mono sticky-0" data-label="#">#17</td>
675
  <td class="model-name sticky-1" data-label="Модель">baidu/ERNIE-4.5-300B-A47B-PT (Novita API)</td>
676
  <td class="num mono" data-label="Критичные/1000">
677
 
@@ -707,7 +743,7 @@
707
  </tr>
708
 
709
  <tr data-model="openai/Qwen/Qwen3-32B">
710
- <td class="rank mono sticky-0" data-label="#">#18</td>
711
  <td class="model-name sticky-1" data-label="Модель">Qwen3-32B (SGLang, without reasoining)</td>
712
  <td class="num mono" data-label="Критичные/1000">
713
 
@@ -743,7 +779,7 @@
743
  </tr>
744
 
745
  <tr data-model="openai/t-tech/T-pro-it-2.0">
746
- <td class="rank mono sticky-0" data-label="#">#19</td>
747
  <td class="model-name sticky-1" data-label="Модель">t-tech/T-pro-it-2.0 (SGLang, without reasoning)</td>
748
  <td class="num mono" data-label="Критичные/1000">
749
 
@@ -779,7 +815,7 @@
779
  </tr>
780
 
781
  <tr data-model="openai/tiiuae/Falcon-H1-34B-Instruct">
782
- <td class="rank mono sticky-0" data-label="#">#20</td>
783
  <td class="model-name sticky-1" data-label="Модель">tiiuae/Falcon-H1-34B-Instruct (vllm)</td>
784
  <td class="num mono" data-label="Критичные/1000">
785
 
@@ -815,7 +851,7 @@
815
  </tr>
816
 
817
  <tr data-model="openrouter/qwen/qwen3-235b-a22b-2507">
818
- <td class="rank mono sticky-0" data-label="#">#21</td>
819
  <td class="model-name sticky-1" data-label="Модель">Qwen3-235B-A22B-2507-Instruct (Alibaba API)</td>
820
  <td class="num mono" data-label="Критичные/1000">
821
 
@@ -851,7 +887,7 @@
851
  </tr>
852
 
853
  <tr data-model="openrouter/qwen/qwen3-vl-8b-instruct">
854
- <td class="rank mono sticky-0" data-label="#">#22</td>
855
  <td class="model-name sticky-1" data-label="Модель">Qwen3-VL-8B-Instruct (Alibaba API, presence_penalty=2)</td>
856
  <td class="num mono" data-label="Критичные/1000">
857
 
@@ -887,7 +923,7 @@
887
  </tr>
888
 
889
  <tr data-model="openrouter/moonshotai/kimi-k2-0905">
890
- <td class="rank mono sticky-0" data-label="#">#23</td>
891
  <td class="model-name sticky-1" data-label="Модель">moonshotai/Kimi-K2-Instruct-0905 (Novita API)</td>
892
  <td class="num mono" data-label="Критичные/1000">
893
 
@@ -923,7 +959,7 @@
923
  </tr>
924
 
925
  <tr data-model="openrouter/z-ai/glm-4.6">
926
- <td class="rank mono sticky-0" data-label="#">#24</td>
927
  <td class="model-name sticky-1" data-label="Модель">GLM-4.6 (Z.ai API)</td>
928
  <td class="num mono" data-label="Критичные/1000">
929
 
@@ -959,7 +995,7 @@
959
  </tr>
960
 
961
  <tr data-model="openrouter/openai/gpt-5">
962
- <td class="rank mono sticky-0" data-label="#">#25</td>
963
  <td class="model-name sticky-1" data-label="Модель">GPT-5 (reasoning: minimal)</td>
964
  <td class="num mono" data-label="Критичные/1000">
965
 
@@ -995,7 +1031,7 @@
995
  </tr>
996
 
997
  <tr data-model="openrouter/openai/gpt-5">
998
- <td class="rank mono sticky-0" data-label="#">#26</td>
999
  <td class="model-name sticky-1" data-label="Модель">GPT-5 (reasoning: low)</td>
1000
  <td class="num mono" data-label="Критичные/1000">
1001
 
@@ -1031,7 +1067,7 @@
1031
  </tr>
1032
 
1033
  <tr data-model="openai/nvidia/NVIDIA-Nemotron-Nano-12B-v2">
1034
- <td class="rank mono sticky-0" data-label="#">#27</td>
1035
  <td class="model-name sticky-1" data-label="Модель">nvidia/NVIDIA-Nemotron-Nano-12B-v2 (vllm, reasoning=false)</td>
1036
  <td class="num mono" data-label="Критичные/1000">
1037
 
@@ -1067,7 +1103,7 @@
1067
  </tr>
1068
 
1069
  <tr data-model="openrouter/openai/gpt-oss-120b">
1070
- <td class="rank mono sticky-0" data-label="#">#28</td>
1071
  <td class="model-name sticky-1" data-label="Модель">GPT-OSS-120B (Vertex AI API)</td>
1072
  <td class="num mono" data-label="Критичные/1000">
1073
 
@@ -1103,7 +1139,7 @@
1103
  </tr>
1104
 
1105
  <tr data-model="openrouter/mistralai/mistral-nemo">
1106
- <td class="rank mono sticky-0" data-label="#">#29</td>
1107
  <td class="model-name sticky-1" data-label="Модель">Mistral-Nemo (Mistral API)</td>
1108
  <td class="num mono" data-label="Критичные/1000">
1109
 
@@ -1139,7 +1175,7 @@
1139
  </tr>
1140
 
1141
  <tr data-model="openrouter/minimax/minimax-m2:free">
1142
- <td class="rank mono sticky-0" data-label="#">#30</td>
1143
  <td class="model-name sticky-1" data-label="Модель">MiniMaxAI/MiniMax-M2 (Minimax API)</td>
1144
  <td class="num mono" data-label="Критичные/1000">
1145
 
@@ -1175,7 +1211,7 @@
1175
  </tr>
1176
 
1177
  <tr data-model="openrouter/minimax/minimax-m2:free">
1178
- <td class="rank mono sticky-0" data-label="#">#31</td>
1179
  <td class="model-name sticky-1" data-label="Модель">MiniMaxAI/MiniMax-M2 (Minimax API, recommend params)</td>
1180
  <td class="num mono" data-label="Критичные/1000">
1181
 
@@ -1233,7 +1269,7 @@
1233
  </div>
1234
  <p class="info-text">Если хотите, чтобы я добавил ту или иную модель в лидерборд - не стесняйтесь открыть issue/pull request на Github.</p>
1235
  <p class="info-text">
1236
- Обновлено: 2025-10-28 09:19:30 | Всего моделей: 31 | <a href="https://github.com/kristaller486/RuQualBench">GitHub</a> | <a href="https://t.me/krists">Telegram</a>
1237
  </p>
1238
  </div>
1239
  <script>
 
310
  <td class="num mono" data-label="Всего токенов">101,336</td>
311
  </tr>
312
 
313
+ <tr data-model="openrouter/qwen/qwen3-235b-a22b-2507">
314
  <td class="rank mono sticky-0" data-label="#">#7</td>
315
+ <td class="model-name sticky-1" data-label="Модель">Qwen/Qwen3-235B-A22B-Instruct-2507 (Vertex AI API)</td>
316
+ <td class="num mono" data-label="Критичные/1000">
317
+
318
+ 0.09 ± 0.01
319
+
320
+ </td>
321
+ <td class="num mono" data-label="Обычные/1000">
322
+
323
+ 0.33 ± 0.06
324
+
325
+ </td>
326
+ <td class="num mono" data-label="Доп./1000">
327
+
328
+ 0.17 ± 0.03
329
+
330
+ </td>
331
+ <td data-label="Нормировано ошибок">
332
+ <div class="score-cell">
333
+ <div class="progress-bar">
334
+
335
+
336
+
337
+ <div class="progress-fill" style="width: 86.11111111111111%"></div>
338
+ </div>
339
+ <span class="score-value">
340
+
341
+ 0.60 ± 0.07
342
+
343
+ </span>
344
+ </div>
345
+ </td>
346
+ <td class="num mono" data-label="Всего токенов">133,057</td>
347
+ </tr>
348
+
349
+ <tr data-model="openai/mistralai/Mistral-Small-3.2-24B-Instruct-2506">
350
+ <td class="rank mono sticky-0" data-label="#">#8</td>
351
  <td class="model-name sticky-1" data-label="Модель">Mistral-Small-3.2-24B-Instruct-2506 (vllm)</td>
352
  <td class="num mono" data-label="Критичные/1000">
353
 
 
383
  </tr>
384
 
385
  <tr data-model="openrouter/deepseek/deepseek-chat">
386
+ <td class="rank mono sticky-0" data-label="#">#9</td>
387
  <td class="model-name sticky-1" data-label="Модель">DeepSeek V3 (Novita API)</td>
388
  <td class="num mono" data-label="Критичные/1000">
389
 
 
419
  </tr>
420
 
421
  <tr data-model="openai/RefalMachine/RuadaptQwen3-32B-Instruct">
422
+ <td class="rank mono sticky-0" data-label="#">#10</td>
423
  <td class="model-name sticky-1" data-label="Модель">RefalMachine/RuadaptQwen3-32B-Instruct (SGLang)</td>
424
  <td class="num mono" data-label="Критичные/1000">
425
 
 
455
  </tr>
456
 
457
  <tr data-model="openai/yandex/YandexGPT-5-Lite-8B-instruct">
458
+ <td class="rank mono sticky-0" data-label="#">#11</td>
459
  <td class="model-name sticky-1" data-label="Модель">yandex/YandexGPT-5-Lite-8B-instruct (SGLang)</td>
460
  <td class="num mono" data-label="Критичные/1000">
461
 
 
491
  </tr>
492
 
493
  <tr data-model="openrouter/anthropic/claude-haiku-4.5">
494
+ <td class="rank mono sticky-0" data-label="#">#12</td>
495
  <td class="model-name sticky-1" data-label="Модель">Claude Haiku 4.5</td>
496
  <td class="num mono" data-label="Критичные/1000">
497
 
 
527
  </tr>
528
 
529
  <tr data-model="openai/Qwen/Qwen3-VL-32B-Instruct">
530
+ <td class="rank mono sticky-0" data-label="#">#13</td>
531
  <td class="model-name sticky-1" data-label="Модель">Qwen3-VL-32B-Instruct (SGLang)</td>
532
  <td class="num mono" data-label="Критичные/1000">
533
 
 
563
  </tr>
564
 
565
  <tr data-model="openai/AvitoTech/avibe">
566
+ <td class="rank mono sticky-0" data-label="#">#14</td>
567
  <td class="model-name sticky-1" data-label="Модель">AvitoTech/avibe</td>
568
  <td class="num mono" data-label="Критичные/1000">
569
 
 
599
  </tr>
600
 
601
  <tr data-model="openai/ai-sage/GigaChat-20B-A3B-instruct-v1.5-bf16">
602
+ <td class="rank mono sticky-0" data-label="#">#15</td>
603
  <td class="model-name sticky-1" data-label="Модель">GigaChat-20B-A3B-instruct-v1.5 (SGLang)</td>
604
  <td class="num mono" data-label="Критичные/1000">
605
 
 
635
  </tr>
636
 
637
  <tr data-model="litellm_proxy/deepseek-v3">
638
+ <td class="rank mono sticky-0" data-label="#">#16</td>
639
  <td class="model-name sticky-1" data-label="Модель">Deepseek V3.2-Exp (Deepseek API)</td>
640
  <td class="num mono" data-label="Критичные/1000">
641
 
 
671
  </tr>
672
 
673
  <tr data-model="openrouter/qwen/qwen3-next-80b-a3b-instruct">
674
+ <td class="rank mono sticky-0" data-label="#">#17</td>
675
  <td class="model-name sticky-1" data-label="Модель">Qwen3-Next-80B-A3B-Instruct (Alibaba API)</td>
676
  <td class="num mono" data-label="Критичные/1000">
677
 
 
707
  </tr>
708
 
709
  <tr data-model="openrouter/baidu/ernie-4.5-300b-a47b">
710
+ <td class="rank mono sticky-0" data-label="#">#18</td>
711
  <td class="model-name sticky-1" data-label="Модель">baidu/ERNIE-4.5-300B-A47B-PT (Novita API)</td>
712
  <td class="num mono" data-label="Критичные/1000">
713
 
 
743
  </tr>
744
 
745
  <tr data-model="openai/Qwen/Qwen3-32B">
746
+ <td class="rank mono sticky-0" data-label="#">#19</td>
747
  <td class="model-name sticky-1" data-label="Модель">Qwen3-32B (SGLang, without reasoining)</td>
748
  <td class="num mono" data-label="Критичные/1000">
749
 
 
779
  </tr>
780
 
781
  <tr data-model="openai/t-tech/T-pro-it-2.0">
782
+ <td class="rank mono sticky-0" data-label="#">#20</td>
783
  <td class="model-name sticky-1" data-label="Модель">t-tech/T-pro-it-2.0 (SGLang, without reasoning)</td>
784
  <td class="num mono" data-label="Критичные/1000">
785
 
 
815
  </tr>
816
 
817
  <tr data-model="openai/tiiuae/Falcon-H1-34B-Instruct">
818
+ <td class="rank mono sticky-0" data-label="#">#21</td>
819
  <td class="model-name sticky-1" data-label="Модель">tiiuae/Falcon-H1-34B-Instruct (vllm)</td>
820
  <td class="num mono" data-label="Критичные/1000">
821
 
 
851
  </tr>
852
 
853
  <tr data-model="openrouter/qwen/qwen3-235b-a22b-2507">
854
+ <td class="rank mono sticky-0" data-label="#">#22</td>
855
  <td class="model-name sticky-1" data-label="Модель">Qwen3-235B-A22B-2507-Instruct (Alibaba API)</td>
856
  <td class="num mono" data-label="Критичные/1000">
857
 
 
887
  </tr>
888
 
889
  <tr data-model="openrouter/qwen/qwen3-vl-8b-instruct">
890
+ <td class="rank mono sticky-0" data-label="#">#23</td>
891
  <td class="model-name sticky-1" data-label="Модель">Qwen3-VL-8B-Instruct (Alibaba API, presence_penalty=2)</td>
892
  <td class="num mono" data-label="Критичные/1000">
893
 
 
923
  </tr>
924
 
925
  <tr data-model="openrouter/moonshotai/kimi-k2-0905">
926
+ <td class="rank mono sticky-0" data-label="#">#24</td>
927
  <td class="model-name sticky-1" data-label="Модель">moonshotai/Kimi-K2-Instruct-0905 (Novita API)</td>
928
  <td class="num mono" data-label="Критичные/1000">
929
 
 
959
  </tr>
960
 
961
  <tr data-model="openrouter/z-ai/glm-4.6">
962
+ <td class="rank mono sticky-0" data-label="#">#25</td>
963
  <td class="model-name sticky-1" data-label="Модель">GLM-4.6 (Z.ai API)</td>
964
  <td class="num mono" data-label="Критичные/1000">
965
 
 
995
  </tr>
996
 
997
  <tr data-model="openrouter/openai/gpt-5">
998
+ <td class="rank mono sticky-0" data-label="#">#26</td>
999
  <td class="model-name sticky-1" data-label="Модель">GPT-5 (reasoning: minimal)</td>
1000
  <td class="num mono" data-label="Критичные/1000">
1001
 
 
1031
  </tr>
1032
 
1033
  <tr data-model="openrouter/openai/gpt-5">
1034
+ <td class="rank mono sticky-0" data-label="#">#27</td>
1035
  <td class="model-name sticky-1" data-label="Модель">GPT-5 (reasoning: low)</td>
1036
  <td class="num mono" data-label="Критичные/1000">
1037
 
 
1067
  </tr>
1068
 
1069
  <tr data-model="openai/nvidia/NVIDIA-Nemotron-Nano-12B-v2">
1070
+ <td class="rank mono sticky-0" data-label="#">#28</td>
1071
  <td class="model-name sticky-1" data-label="Модель">nvidia/NVIDIA-Nemotron-Nano-12B-v2 (vllm, reasoning=false)</td>
1072
  <td class="num mono" data-label="Критичные/1000">
1073
 
 
1103
  </tr>
1104
 
1105
  <tr data-model="openrouter/openai/gpt-oss-120b">
1106
+ <td class="rank mono sticky-0" data-label="#">#29</td>
1107
  <td class="model-name sticky-1" data-label="Модель">GPT-OSS-120B (Vertex AI API)</td>
1108
  <td class="num mono" data-label="Критичные/1000">
1109
 
 
1139
  </tr>
1140
 
1141
  <tr data-model="openrouter/mistralai/mistral-nemo">
1142
+ <td class="rank mono sticky-0" data-label="#">#30</td>
1143
  <td class="model-name sticky-1" data-label="Модель">Mistral-Nemo (Mistral API)</td>
1144
  <td class="num mono" data-label="Критичные/1000">
1145
 
 
1175
  </tr>
1176
 
1177
  <tr data-model="openrouter/minimax/minimax-m2:free">
1178
+ <td class="rank mono sticky-0" data-label="#">#31</td>
1179
  <td class="model-name sticky-1" data-label="Модель">MiniMaxAI/MiniMax-M2 (Minimax API)</td>
1180
  <td class="num mono" data-label="Критичные/1000">
1181
 
 
1211
  </tr>
1212
 
1213
  <tr data-model="openrouter/minimax/minimax-m2:free">
1214
+ <td class="rank mono sticky-0" data-label="#">#32</td>
1215
  <td class="model-name sticky-1" data-label="Модель">MiniMaxAI/MiniMax-M2 (Minimax API, recommend params)</td>
1216
  <td class="num mono" data-label="Критичные/1000">
1217
 
 
1269
  </div>
1270
  <p class="info-text">Если хотите, чтобы я добавил ту или иную модель в лидерборд - не стесняйтесь открыть issue/pull request на Github.</p>
1271
  <p class="info-text">
1272
+ Обновлено: 2025-10-28 09:56:48 | Всего моделей: 32 | <a href="https://github.com/kristaller486/RuQualBench">GitHub</a> | <a href="https://t.me/krists">Telegram</a>
1273
  </p>
1274
  </div>
1275
  <script>