File size: 22,959 Bytes
1a4f599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import gradio as gr
import pandas as pd
from datasets import load_dataset
import plotly.graph_objects as go
import datetime
import json
import random
import os
from model_handler import generate_response, get_inference_configs
import torch

# Configuration for datasets
DATASET_CONFIGS = {
    'Loggenix Synthetic AI Tasks Eval (with outputs)': {
        'repo_id': 'kshitijthakkar/loggenix-synthetic-ai-tasks-eval-with-outputs',
        'split': 'train'
    },
    'Loggenix Synthetic AI Tasks Eval (with outputs) v5': {
        'repo_id': 'kshitijthakkar/loggenix-synthetic-ai-tasks-eval_v5-with-outputs',
        'split': 'train'
    }
}


# Load main dataset for inference tab
def load_inference_dataset():
    """Load the main dataset for inference use case"""
    try:
        print("Loading synthetic-ai-tasks-eval-v5 dataset...")
        dataset = load_dataset(
            'kshitijthakkar/synthetic-ai-tasks-eval-v5',
            split='train',
            trust_remote_code=True
        )
        df = dataset.to_pandas()
        print(f"βœ“ Successfully loaded: {len(df)} rows, {len(df.columns)} columns")
        return df
    except Exception as e:
        print(f"βœ— Error loading dataset: {str(e)}")
        return pd.DataFrame({'Error': [f'Failed to load: {str(e)}']})


# Load dataset for eval samples tab
def load_eval_datasets():
    """Load all datasets for evaluation samples"""
    datasets = {}
    for display_name, config in DATASET_CONFIGS.items():
        try:
            print(f"Loading {display_name}...")
            dataset = load_dataset(
                config['repo_id'],
                split=config['split'],
                trust_remote_code=True
            )
            df = dataset.to_pandas()
            datasets[display_name] = df
            print(f"βœ“ Successfully loaded {display_name}: {len(df)} rows")
        except Exception as e:
            print(f"βœ— Error loading {display_name}: {str(e)}")
            datasets[display_name] = pd.DataFrame({
                'Error': [f'Failed to load: {str(e)}'],
                'Dataset': [config['repo_id']]
            })
    return datasets


# Load datasets
INFERENCE_DATASET = load_inference_dataset()
EVAL_DATASETS = load_eval_datasets()


# ===== TAB 1: INFERENCE USE CASE =====

def get_task_types():
    """Get unique task types from inference dataset"""
    if 'task_type' in INFERENCE_DATASET.columns:
        task_types = INFERENCE_DATASET['task_type'].unique().tolist()
        return [str(t) for t in task_types if pd.notna(t)]
    return ["No task types available"]


def get_task_by_type(task_type):
    """Get task content by task type"""
    if 'task_type' in INFERENCE_DATASET.columns and 'task' in INFERENCE_DATASET.columns:
        filtered = INFERENCE_DATASET[INFERENCE_DATASET['task_type'] == task_type]
        if len(filtered) > 0:
            return str(filtered.iloc[0]['task'])
    return "No task found for this type"


def run_inference(task_type, system_prompt, user_input, inference_config):
    """Run model inference"""
    if not user_input.strip():
        return "Please enter a user input"

    if not system_prompt.strip():
        return "Please select a task type to load system prompt"

    try:
        # Get inference configuration
        configs = get_inference_configs()
        config = configs.get(inference_config, configs["Optimized for Speed"])

        # Run inference
        response = generate_response(
            system_prompt=system_prompt,
            user_input=user_input,
            config_name=inference_config
        )
        return response
    except Exception as e:
        return f"Error during inference: {str(e)}"


# ===== TAB 2: EVAL SAMPLES =====

def update_eval_table(dataset_name):
    """Update eval table based on selected dataset"""
    if dataset_name in EVAL_DATASETS:
        return EVAL_DATASETS[dataset_name].head(100)
    return pd.DataFrame()


def get_eval_dataset_info(dataset_name):
    """Get info about selected eval dataset"""
    if dataset_name in EVAL_DATASETS:
        df = EVAL_DATASETS[dataset_name]
        return f"""
        **Dataset**: {dataset_name}
        - **Rows**: {len(df):,}
        - **Columns**: {len(df.columns)}
        - **Column Names**: {', '.join(df.columns.tolist())}
        """
    return "No dataset selected"


# ===== TAB 3 & 4: FLAGGING FUNCTIONALITY =====

def generate_chart():
    """Generate a sample Plotly chart"""
    x = list(range(10))
    y = [random.randint(1, 100) for _ in x]
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=x, y=y, mode="lines+markers", name="Random Data"))
    fig.update_layout(title="Sample Chart", xaxis_title="X-axis", yaxis_title="Y-axis")
    return fig.to_html(full_html=False)


def chat_interface(prompt, history):
    """Handle chat interface with history"""
    if not prompt.strip():
        return history, ""

    history.append(("You", prompt))

    try:
        if "chart" in prompt.lower() or "graph" in prompt.lower():
            response = generate_chart()
        else:
            response = f"This is a demo response to: {prompt}"

        if isinstance(response, str):
            formatted_response = f"**AI Assistant:**\n{response}"
            history.append(("AI Assistant", formatted_response))
        else:
            history.append(("AI Assistant", response))
    except Exception as e:
        error_msg = f"**AI Assistant:**\nSorry, an error occurred: {str(e)}"
        history.append(("AI Assistant", error_msg))

    return history, ""


def flag_response(history, flagged_message, flag_reason):
    """Flag a response"""
    if not flagged_message or flagged_message == "No responses available":
        return "Invalid message selection."

    try:
        flagged_index = int(flagged_message.split()[1][:-1])
        if flagged_index >= len(history) or history[flagged_index][0] != "AI Assistant":
            return "You can only flag assistant responses."

        flagged_message_content = history[flagged_index][1]

        log_entry = {
            "timestamp": datetime.datetime.now().isoformat(),
            "flag_reason": str(flag_reason),
            "flagged_message": str(flagged_message_content),
            "conversation_context": history,
        }

        os.makedirs("logs", exist_ok=True)
        with open("logs/flagged_responses.log", "a") as f:
            f.write(json.dumps(log_entry) + "\n")

        return f"Response flagged successfully"
    except Exception as e:
        return f"Error flagging response: {str(e)}"


def get_assistant_responses(history):
    """Get dropdown options for assistant responses"""
    responses = [
        f"Response {i}: {str(msg[1])[:50]}..."
        for i, msg in enumerate(history)
        if msg[0] == "AI Assistant"
    ]

    if not responses:
        responses = ["No responses available"]

    return gr.update(choices=responses, value=responses[0])


def display_selected_message(selected_index, history):
    """Display the selected flagged message"""
    if selected_index == "No responses available":
        return "No responses available"

    try:
        flagged_index = int(selected_index.split()[1][:-1])
        if flagged_index < len(history) and history[flagged_index][0] == "AI Assistant":
            return history[flagged_index][1]
        else:
            return "Invalid selection."
    except Exception as e:
        return f"Error: {str(e)}"


def read_flagged_messages():
    """Read flagged messages from log file"""
    try:
        if not os.path.exists("logs/flagged_responses.log"):
            return pd.DataFrame()

        with open("logs/flagged_responses.log", "r") as f:
            flagged_messages = f.readlines()

        if not flagged_messages:
            return pd.DataFrame()

        table_data = []
        for entry in flagged_messages:
            data = json.loads(entry)
            table_data.append({
                "Timestamp": data.get("timestamp", "N/A"),
                "Flag Reason": data.get("flag_reason", "N/A"),
                "Flagged Message": data.get("flagged_message", "N/A")[:100] + "...",
                "Conversation Context": str(len(data.get("conversation_context", []))) + " messages"
            })
        return pd.DataFrame(table_data)
    except Exception as e:
        return pd.DataFrame({"Error": [f"Error reading flagged messages: {str(e)}"]})


def handle_row_select(evt: gr.SelectData):
    """Handle row selection in flagged messages table"""
    try:
        if not os.path.exists("logs/flagged_responses.log"):
            return []

        with open("logs/flagged_responses.log", "r") as f:
            flagged_messages_log = f.readlines()

        if evt.index[0] < len(flagged_messages_log):
            selected_entry = json.loads(flagged_messages_log[evt.index[0]])
            conversation_context = selected_entry.get("conversation_context", [])
            return conversation_context
        return []
    except Exception as e:
        return [("System", f"Error loading conversation: {str(e)}")]


def clear_history():
    """Clear chat history"""
    return [], gr.update(choices=["No responses available"], value="No responses available")


# ===== MAIN INTERFACE =====

def create_interface():
    with gr.Blocks(title="AI Tasks Evaluation Suite", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# πŸ€– AI Tasks Evaluation Suite")
        gr.Markdown("Comprehensive platform for AI model evaluation and testing")

        with gr.Tabs():
            # TAB 1: INFERENCE USE CASE
            with gr.Tab("πŸš€ Inference Use Case"):
                gr.Markdown("## Model Inference Testing")

                with gr.Row():
                    with gr.Column(scale=1):
                        # Task type dropdown
                        task_type_dropdown = gr.Dropdown(
                            choices=get_task_types(),
                            value=get_task_types()[0] if get_task_types() else None,
                            label="Task Type",
                            info="Select task type to load system prompt"
                        )

                        # Inference configuration
                        inference_config = gr.Dropdown(
                            choices=list(get_inference_configs().keys()),
                            value="Optimized for Speed",
                            label="Inference Configuration",
                            info="Select inference optimization level"
                        )

                    with gr.Column(scale=2):
                        # System prompt (editable)
                        system_prompt = gr.Textbox(
                            label="System Prompt (Editable)",
                            lines=6,
                            max_lines=10,
                            placeholder="Select a task type to load system prompt...",
                            interactive=True
                        )

                with gr.Row():
                    with gr.Column():
                        # User input
                        user_input = gr.Textbox(
                            label="User Input",
                            lines=4,
                            placeholder="Enter your input here...",
                            interactive=True
                        )

                    with gr.Column():
                        # Model response
                        model_response = gr.Textbox(
                            label="Model Response",
                            lines=8,
                            interactive=False
                        )

                with gr.Row():
                    submit_btn = gr.Button("πŸ”₯ Run Inference", variant="primary", size="lg")
                    clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")

                # Event handlers for Tab 1
                task_type_dropdown.change(
                    fn=get_task_by_type,
                    inputs=[task_type_dropdown],
                    outputs=[system_prompt]
                )

                submit_btn.click(
                    fn=run_inference,
                    inputs=[task_type_dropdown, system_prompt, user_input, inference_config],
                    outputs=[model_response]
                )

                clear_btn.click(
                    fn=lambda: ("", "", ""),
                    outputs=[system_prompt, user_input, model_response]
                )

            # TAB 2: EVAL SAMPLES
            with gr.Tab("πŸ“Š Eval Samples"):
                gr.Markdown("## Dataset Evaluation Samples")

                with gr.Row():
                    with gr.Column(scale=1):
                        eval_dataset_dropdown = gr.Dropdown(
                            choices=list(EVAL_DATASETS.keys()),
                            value=list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else None,
                            label="Select Dataset",
                            info="Choose evaluation dataset to view"
                        )

                        eval_dataset_info = gr.Markdown(
                            get_eval_dataset_info(list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else "")
                        )

                with gr.Row():
                    eval_table = gr.Dataframe(
                        value=update_eval_table(list(EVAL_DATASETS.keys())[0]) if EVAL_DATASETS else pd.DataFrame(),
                        label="Dataset Table",
                        max_height=800,
                        min_width=800,
                        interactive=False,
                        wrap=True,
                        show_fullscreen_button=True,
                        show_copy_button=True,
                        show_row_numbers=True,
                        show_search="filter",
                    )

                # Event handlers for Tab 2
                eval_dataset_dropdown.change(
                    fn=lambda x: (update_eval_table(x), get_eval_dataset_info(x)),
                    inputs=[eval_dataset_dropdown],
                    outputs=[eval_table, eval_dataset_info]
                )

            # TAB 3: FLAG RESPONSES
            with gr.Tab("🚩 Flag Responses"):
                gr.Markdown("## Chat Interface with Response Flagging")

                with gr.Row():
                    with gr.Column():
                        chat_input = gr.Textbox(placeholder="Ask something...", label="Your Message")

                        with gr.Row():
                            chat_submit_btn = gr.Button("Send", variant="primary")
                            chat_clear_btn = gr.Button("Clear History", variant="secondary")

                    with gr.Column():
                        chat_display = gr.Chatbot(label="Chat History", height=400)
                        chat_history_state = gr.State([])

                gr.Markdown("### Flag Response")
                with gr.Row():
                    with gr.Column():
                        flagged_message_index = gr.Dropdown(
                            label="Select a response to flag",
                            choices=["No responses available"],
                            value="No responses available",
                            interactive=True
                        )

                        selected_message_display = gr.Textbox(
                            label="Selected Response",
                            interactive=False,
                            lines=4
                        )

                    with gr.Column():
                        flag_reason = gr.Textbox(
                            placeholder="Enter reason for flagging...",
                            label="Reason for Flagging"
                        )

                        flag_btn = gr.Button("Flag Response", variant="stop")
                        flag_output = gr.Textbox(label="Flagging Feedback", visible=True)

                # Event handlers for Tab 3
                chat_submit_btn.click(
                    chat_interface,
                    inputs=[chat_input, chat_history_state],
                    outputs=[chat_display, chat_input]
                ).then(
                    get_assistant_responses,
                    inputs=[chat_history_state],
                    outputs=[flagged_message_index]
                )

                chat_clear_btn.click(
                    clear_history,
                    outputs=[chat_display, flagged_message_index]
                )

                flagged_message_index.change(
                    display_selected_message,
                    inputs=[flagged_message_index, chat_history_state],
                    outputs=[selected_message_display]
                )

                flag_btn.click(
                    flag_response,
                    inputs=[chat_history_state, flagged_message_index, flag_reason],
                    outputs=[flag_output]
                )

            # TAB 4: VIEW FLAGGED RESPONSES
            with gr.Tab("πŸ‘€ View Flagged Responses"):
                gr.Markdown("## Review Flagged Responses")

                with gr.Row():
                    with gr.Column():
                        flagged_messages_display = gr.Dataframe(
                            headers=["Timestamp", "Flag Reason", "Flagged Message", "Conversation Context"],
                            interactive=False,
                            max_height=400
                        )
                        refresh_btn = gr.Button("πŸ”„ Refresh", variant="primary")

                    with gr.Column():
                        conversation_context_display = gr.Chatbot(
                            label="Conversation Context",
                            height=400
                        )

                # Event handlers for Tab 4
                flagged_messages_display.select(
                    handle_row_select,
                    outputs=[conversation_context_display]
                )

                refresh_btn.click(
                    read_flagged_messages,
                    outputs=[flagged_messages_display]
                )

            # TAB 5: MODEL EVAL RESULTS
            with gr.Tab("πŸ“ˆ Model Eval Results"):
                gr.Markdown("## Model Evaluation Results")
                gr.Markdown("### 🚧 Coming Soon")
                gr.Markdown(
                    "This section will display comprehensive model evaluation metrics, charts, and performance analysis.")

                # Placeholder content
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("#### Evaluation Metrics")
                        gr.Markdown("- Accuracy scores")
                        gr.Markdown("- Performance benchmarks")
                        gr.Markdown("- Comparative analysis")

                    with gr.Column():
                        gr.Markdown("#### Visualization")
                        gr.Markdown("- Performance charts")
                        gr.Markdown("- Score distributions")
                        gr.Markdown("- Trend analysis")

            # TAB 6: ABOUT
            with gr.Tab("ℹ️ About"):
                gr.Markdown("## About Loggenix MOE Model")

                gr.Markdown("""
                ### Model: `kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.2-finetuned-tool`

                This is a fine-tuned Mixture of Experts (MOE) model designed for specialized AI tasks with tool calling capabilities.

                #### Key Features:
                - **Architecture**: MOE with 0.3B total parameters, 0.1B active parameters
                - **Training**: Fine-tuned with learning rate 7e-5, batch size 16
                - **Hardware**: Optimized for RTX 4090 GPU
                - **Capabilities**: Tool calling, instruction following, task-specific responses

                #### Model Specifications:
                - **Total Parameters**: 0.3B
                - **Active Parameters**: 0.1B  
                - **Context Length**: 4096 tokens
                - **Precision**: FP16 for optimal performance
                - **Flash Attention**: Supported for faster inference

                #### Sample Inference Code:
                ```python
                from transformers import AutoModelForCausalLM, AutoTokenizer
                import torch

                # Load model and tokenizer
                model_id = "kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.2-finetuned-tool"
                tokenizer = AutoTokenizer.from_pretrained(model_id)
                model = AutoModelForCausalLM.from_pretrained(
                    model_id,
                    device_map="auto",
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2"
                ).eval()

                # Prepare messages
                messages = [
                    {"role": "system", "content": "You are a helpful AI assistant."},
                    {"role": "user", "content": "Calculate 25 + 37"}
                ]

                # Format and generate
                prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
                inputs = tokenizer(prompt, return_tensors="pt").to("cuda")

                with torch.no_grad():
                    outputs = model.generate(
                        **inputs,
                        max_new_tokens=512,
                        do_sample=True,
                        temperature=0.7,
                        pad_token_id=tokenizer.pad_token_id
                    )

                response = tokenizer.decode(outputs[0], skip_special_tokens=True)
                print(response)
                ```

                #### Tool Calling Support:
                The model supports structured tool calling for mathematical operations, data analysis, and other specialized tasks.

                #### Performance Optimizations:
                - **Speed Mode**: Max 512 new tokens for fast responses  
                - **Balanced Mode**: Max 2048 new tokens for comprehensive answers
                - **Full Capacity**: Dynamic token allocation up to context limit

                ---

                **Developed by**: Kshitij Thakkar  
                **Version**: v6.2  
                **License**: Please check model repository for licensing details
                """)

        # Load initial data
        demo.load(
            fn=read_flagged_messages,
            outputs=[flagged_messages_display]
        )

    return demo


# Launch the application
if __name__ == "__main__":
    print("Starting AI Tasks Evaluation Suite...")
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=True
    )