File size: 47,372 Bytes
ddc41f5 02a42b8 ddc41f5 02a42b8 ddc41f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 |
import torch
import time
import gc
import json
import re
import logging
import traceback
import sys
from pathlib import Path
from typing import Dict, Any, Optional, Tuple
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
# Configure logging
def setup_logging(log_level=logging.INFO, log_file="model_inference.log"):
"""Setup comprehensive logging configuration"""
# Create logs directory if it doesn't exist
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
# Create formatter
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(funcName)s:%(lineno)d - %(message)s'
)
# Setup file handler
file_handler = logging.FileHandler(log_dir / log_file)
file_handler.setLevel(log_level)
file_handler.setFormatter(formatter)
# Setup console handler
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(log_level)
console_handler.setFormatter(formatter)
# Setup logger
logger = logging.getLogger(__name__)
logger.setLevel(log_level)
logger.addHandler(file_handler)
logger.addHandler(console_handler)
# Prevent duplicate logs
logger.propagate = False
return logger
# Initialize logger
logger = setup_logging()
# Performance optimizations
try:
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
logger.info("PyTorch optimizations enabled successfully")
except Exception as e:
logger.warning(f"Failed to enable some PyTorch optimizations: {e}")
# Global model and tokenizer variables
model = None
tokenizer = None
MODEL_ID = "kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.3-finetuned-tool"
# Inference configurations
INFERENCE_CONFIGS = {
"Optimized for Speed": {
"max_new_tokens_base": 512,
"max_new_tokens_cap": 512,
"min_tokens": 50,
"temperature": 0.7,
"top_p": 0.9,
"do_sample": True,
"use_cache": False,
"description": "Fast responses with limited output length"
},
"Middle-ground": {
"max_new_tokens_base": 2048,
"max_new_tokens_cap": 2048,
"min_tokens": 50,
"temperature": 0.7,
"top_p": 0.9,
"do_sample": True,
"use_cache": False,
"description": "Balanced performance and output quality"
},
"Full Capacity": {
"max_new_tokens_base": 4096,
"max_new_tokens_cap": 4096,
"min_tokens": 1,
"temperature": 0.7,
"top_p": 0.9,
"do_sample": True,
"use_cache": False,
"description": "Maximum output length with dynamic allocation"
}
}
def validate_config(config_name: str) -> bool:
"""Validate inference configuration"""
try:
if config_name not in INFERENCE_CONFIGS:
logger.error(f"Invalid config name: {config_name}. Available: {list(INFERENCE_CONFIGS.keys())}")
return False
config = INFERENCE_CONFIGS[config_name]
required_fields = ["max_new_tokens_base", "max_new_tokens_cap", "min_tokens", "temperature", "top_p"]
for field in required_fields:
if field not in config:
logger.error(f"Missing required field '{field}' in config '{config_name}'")
return False
logger.debug(f"Configuration '{config_name}' validated successfully")
return True
except Exception as e:
logger.error(f"Error validating config '{config_name}': {e}")
return False
def get_inference_configs():
"""Get available inference configurations"""
try:
logger.debug("Retrieving inference configurations")
return INFERENCE_CONFIGS
except Exception as e:
logger.error(f"Error retrieving inference configurations: {e}")
return {}
def check_system_requirements() -> bool:
"""Check if system meets requirements for model loading"""
try:
# Check CUDA availability
if not torch.cuda.is_available():
logger.warning("CUDA is not available. Model will run on CPU (much slower)")
return True # Still allow CPU execution
# Check GPU memory
gpu_count = torch.cuda.device_count()
logger.info(f"Found {gpu_count} GPU(s)")
for i in range(gpu_count):
gpu_props = torch.cuda.get_device_properties(i)
total_memory = gpu_props.total_memory / 1e9
logger.info(f"GPU {i}: {gpu_props.name}, Memory: {total_memory:.1f}GB")
if total_memory < 4.0: # Minimum 4GB for quantized model
logger.warning(f"GPU {i} has insufficient memory ({total_memory:.1f}GB < 4.0GB)")
return True
except Exception as e:
logger.error(f"Error checking system requirements: {e}")
return False
def load_model() -> Tuple[Optional[Any], Optional[Any]]:
"""Load model and tokenizer with comprehensive error handling"""
global model, tokenizer
try:
if model is not None and tokenizer is not None:
logger.debug("Model and tokenizer already loaded")
return model, tokenizer
logger.info("Starting model loading process...")
# Check system requirements
if not check_system_requirements():
logger.error("System requirements check failed")
return None, None
# Load tokenizer with error handling
logger.info(f"Loading tokenizer from {MODEL_ID}...")
try:
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
trust_remote_code=True, # Add this for custom tokenizers
#cache_dir="./model_cache" # Use local cache
)
logger.info("Tokenizer loaded successfully")
except Exception as e:
logger.error(f"Failed to load tokenizer: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
return None, None
# Configure quantization
try:
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
logger.info("8-bit quantization configuration created")
except Exception as e:
logger.error(f"Failed to create quantization config: {e}")
quantization_config = None
# Load model with extensive error handling
logger.info(f"Loading model from {MODEL_ID}...")
try:
model_kwargs = {
"device_map": "auto",
#"dtype": torch.float16,
"use_cache": False,
"trust_remote_code": True,
#"cache_dir": "./model_cache"
}
# Add quantization if available
if quantization_config:
model_kwargs["quantization_config"] = quantization_config
# Try to use flash attention if available
try:
if hasattr(torch.nn, 'scaled_dot_product_attention'):
model_kwargs["attn_implementation"] = "flash_attention_2"
logger.info("Using Flash Attention 2")
except Exception as e:
logger.warning(f"Flash Attention 2 not available: {e}")
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **model_kwargs)
model = model.eval()
logger.info("Model loaded successfully")
print(next(model.parameters()).device)
from accelerate import infer_auto_device_map
print(infer_auto_device_map(model)) # Should show "cuda" for all layers
except torch.cuda.OutOfMemoryError:
logger.error("CUDA out of memory. Try reducing batch size or using CPU")
return None, None
except Exception as e:
logger.error(f"Failed to load model: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
return None, None
# Configure model settings with error handling
try:
# Enable gradient checkpointing if available
if hasattr(model, 'gradient_checkpointing_enable'):
model.gradient_checkpointing_enable()
logger.debug("Gradient checkpointing enabled")
# Set pad_token_id
if model.config.pad_token_id is None:
if tokenizer.pad_token_id is not None:
model.config.pad_token_id = tokenizer.pad_token_id
logger.debug("Set model pad_token_id from tokenizer")
else:
# Fallback to eos_token_id
model.config.pad_token_id = tokenizer.eos_token_id
tokenizer.pad_token_id = tokenizer.eos_token_id
logger.debug("Set pad_token_id to eos_token_id")
# Set padding side to left for better batching
tokenizer.padding_side = "left"
logger.debug("Set tokenizer padding side to left")
except Exception as e:
logger.warning(f"Error configuring model settings: {e}")
# Log memory usage
try:
if hasattr(model, 'get_memory_footprint'):
memory = model.get_memory_footprint() / 1e6
logger.info(f"Model memory footprint: {memory:,.1f} MB")
except Exception as e:
logger.warning(f"Could not get memory footprint: {e}")
logger.info("Model loading completed successfully")
return model, tokenizer
except Exception as e:
logger.error(f"Unexpected error in load_model: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
return None, None
# ===== TOOL DEFINITIONS =====
def calculate_numbers(operation: str, num1: float, num2: float) -> Dict[str, Any]:
"""
Sample tool to perform basic mathematical operations on two numbers.
Args:
operation: The operation to perform ('add', 'subtract', 'multiply', 'divide')
num1: First number
num2: Second number
Returns:
Dictionary with result and operation details
"""
try:
logger.debug(f"Calculating: {num1} {operation} {num2}")
# Validate inputs
if not isinstance(operation, str):
raise ValueError("Operation must be a string")
try:
num1, num2 = float(num1), float(num2)
except (ValueError, TypeError) as e:
logger.error(f"Invalid number format: num1={num1}, num2={num2}")
return {"error": f"Invalid number format: {str(e)}"}
operation = operation.lower().strip()
# Perform operation
if operation == 'add':
result = num1 + num2
elif operation == 'subtract':
result = num1 - num2
elif operation == 'multiply':
result = num1 * num2
elif operation == 'divide':
if num2 == 0:
logger.error("Division by zero attempted")
return {"error": "Division by zero is not allowed"}
result = num1 / num2
else:
logger.error(f"Unknown operation: {operation}")
return {"error": f"Unknown operation: {operation}. Supported: add, subtract, multiply, divide"}
response = {
"result": result,
"operation": operation,
"operands": [num1, num2],
"formatted": f"{num1} {operation} {num2} = {result}"
}
logger.debug(f"Calculation successful: {response['formatted']}")
return response
except Exception as e:
logger.error(f"Unexpected error in calculate_numbers: {e}")
return {"error": f"Calculation error: {str(e)}"}
# Tool registry
AVAILABLE_TOOLS = {
"calculate_numbers": {
"function": calculate_numbers,
"description": "Perform basic mathematical operations (add, subtract, multiply, divide) on two numbers",
"parameters": {
"operation": "The mathematical operation to perform",
"num1": "First number",
"num2": "Second number"
}
}
}
def execute_tool_call(tool_name: str, **kwargs) -> Dict[str, Any]:
"""Execute a tool call with given parameters"""
try:
logger.info(f"Executing tool: {tool_name} with parameters: {kwargs}")
if not tool_name or not isinstance(tool_name, str):
logger.error(f"Invalid tool name: {tool_name}")
return {"error": "Invalid tool name"}
if tool_name not in AVAILABLE_TOOLS:
logger.error(f"Unknown tool: {tool_name}. Available: {list(AVAILABLE_TOOLS.keys())}")
return {"error": f"Unknown tool: {tool_name}"}
if not isinstance(kwargs, dict):
logger.error(f"Invalid parameters type: {type(kwargs)}")
return {"error": "Parameters must be a dictionary"}
tool_function = AVAILABLE_TOOLS[tool_name]["function"]
result = tool_function(**kwargs)
response = {
"tool_name": tool_name,
"parameters": kwargs,
"result": result
}
if "error" not in result:
logger.info(f"Tool execution successful: {tool_name}")
else:
logger.warning(f"Tool execution returned error: {result['error']}")
return response
except TypeError as e:
logger.error(f"Parameter error for tool '{tool_name}': {e}")
return {
"tool_name": tool_name,
"parameters": kwargs,
"error": f"Invalid parameters: {str(e)}"
}
except Exception as e:
logger.error(f"Tool execution failed: {str(e)}")
logger.error(f"Traceback: {traceback.format_exc()}")
return {
"tool_name": tool_name,
"parameters": kwargs,
"error": f"Tool execution error: {str(e)}"
}
def parse_tool_calls(text: str) -> list:
"""
Parse tool calls from model output with comprehensive error handling.
Supports both formats:
- [TOOL_CALL:tool_name(param1=value1, param2=value2)]
- <tool_call>{"name": "tool_name", "parameters": {"param1": "value1", "param2": "value2"}}</tool_call>
"""
try:
if not text or not isinstance(text, str):
logger.warning("Invalid text input for tool call parsing")
return []
tool_calls = []
logger.debug(f"Parsing tool calls from text: {text[:200]}...")
# Pattern for both formats
pattern = r'(\[TOOL_CALL:(\w+)\((.*?)\)\]|<tool_call>\s*{"name":\s*"(\w+)",\s*"parameters":\s*{([^}]*)}\s*}\s*</tool_call>)'
matches = re.findall(pattern, text)
logger.debug(f"Found {len(matches)} potential tool call matches")
for i, match in enumerate(matches):
try:
full_match, old_tool_name, old_params, json_tool_name, json_params = match
# Determine which format was matched
if old_tool_name: # Old format: [TOOL_CALL:tool_name(params)]
tool_name = old_tool_name
params_str = old_params
original_call = f"[TOOL_CALL:{tool_name}({params_str})]"
params = {}
if params_str.strip():
param_pairs = params_str.split(',')
for pair in param_pairs:
try:
if '=' in pair:
key, value = pair.split('=', 1)
key = key.strip()
value = value.strip().strip('"\'') # Remove quotes
params[key] = value
except Exception as e:
logger.warning(f"Error parsing parameter pair '{pair}': {e}")
logger.debug(f"Parsed old format tool call: {tool_name} with params: {params}")
elif json_tool_name: # JSON format: <tool_call>...</tool_call>
tool_name = json_tool_name
params_str = json_params
original_call = full_match
params = {}
if params_str.strip():
# Parse JSON-like parameters
param_pairs = params_str.split(',')
for pair in param_pairs:
try:
if ':' in pair:
key, value = pair.split(':', 1)
key = key.strip().strip('"\'') # Remove quotes and whitespace
value = value.strip().strip('"\'') # Remove quotes and whitespace
params[key] = value
except Exception as e:
logger.warning(f"Error parsing JSON parameter pair '{pair}': {e}")
logger.debug(f"Parsed JSON format tool call: {tool_name} with params: {params}")
else:
logger.warning(f"Could not determine tool call format for match {i}")
continue
# Validate tool call
if tool_name and isinstance(params, dict):
tool_calls.append({
"tool_name": tool_name,
"parameters": params,
"original_call": original_call
})
else:
logger.warning(f"Invalid tool call data: tool_name='{tool_name}', params={params}")
except Exception as e:
logger.error(f"Error parsing tool call match {i}: {e}")
continue
logger.info(f"Successfully parsed {len(tool_calls)} tool calls")
return tool_calls
except Exception as e:
logger.error(f"Unexpected error in parse_tool_calls: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
return []
def process_tool_calls(text: str) -> str:
"""Process tool calls in the generated text and replace with results"""
try:
if not text:
logger.warning("Empty text provided to process_tool_calls")
return text
logger.debug("Processing tool calls in generated text")
tool_calls = parse_tool_calls(text)
if not tool_calls:
logger.debug("No tool calls found in text")
return text
processed_text = text
successful_calls = 0
for i, tool_call in enumerate(tool_calls):
try:
tool_name = tool_call["tool_name"]
parameters = tool_call["parameters"]
original_call = tool_call["original_call"]
logger.debug(f"Processing tool call {i + 1}/{len(tool_calls)}: {tool_name}")
# Validate parameters before execution
if not isinstance(parameters, dict):
logger.error(f"Invalid parameters for tool {tool_name}: {parameters}")
replacement = f"[TOOL_ERROR: Invalid parameters for tool {tool_name}]"
else:
# Execute tool
result = execute_tool_call(tool_name, **parameters)
# Create replacement text
if "error" in result:
replacement = f"[TOOL_ERROR: {result['error']}]"
logger.warning(f"Tool call failed: {result['error']}")
else:
if "result" in result["result"] and "formatted" in result["result"]:
replacement = f"[TOOL_RESULT: {result['result']['formatted']}]"
elif "result" in result:
replacement = f"[TOOL_RESULT: {result['result']}]"
else:
replacement = f"[TOOL_RESULT: Success]"
successful_calls += 1
logger.debug(f"Tool call successful: {replacement}")
# Replace tool call with result
processed_text = processed_text.replace(original_call, replacement)
except Exception as e:
logger.error(f"Error processing tool call {i + 1}: {e}")
tool_name = tool_call.get("tool_name", "unknown")
original_call = tool_call.get("original_call", "")
replacement = f"[TOOL_ERROR: Failed to process tool call: {str(e)}]"
if original_call:
processed_text = processed_text.replace(original_call, replacement)
logger.info(f"Processed {len(tool_calls)} tool calls ({successful_calls} successful)")
return processed_text
except Exception as e:
logger.error(f"Unexpected error in process_tool_calls: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
return text # Return original text if processing fails
def monitor_memory():
"""Monitor and log memory usage"""
try:
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated() / 1e9
cached = torch.cuda.memory_reserved() / 1e9
max_allocated = torch.cuda.max_memory_allocated() / 1e9
logger.info(
f"GPU Memory - Allocated: {allocated:.2f}GB, Cached: {cached:.2f}GB, Max: {max_allocated:.2f}GB")
# Log warning if memory usage is high
total_memory = torch.cuda.get_device_properties(0).total_memory / 1e9
if allocated / total_memory > 0.9:
logger.warning(f"High GPU memory usage: {allocated / total_memory * 100:.1f}%")
# Clean up cache if needed
torch.cuda.empty_cache()
else:
logger.debug("CUDA not available, skipping GPU memory monitoring")
# Clean up Python memory
gc.collect()
logger.debug("Resources cleaned up successfully")
except Exception as e:
logger.error(f"Error monitoring memory: {e}")
def get_model_info() -> Dict[str, Any]:
"""Get information about the loaded model"""
try:
if model is None:
return {"status": "not_loaded"}
info = {
"status": "loaded",
"model_id": MODEL_ID,
"device": str(model.device) if hasattr(model, 'device') else "unknown",
"dtype": str(model.dtype) if hasattr(model, 'dtype') else "unknown"
}
# Add memory info if available
if hasattr(model, 'get_memory_footprint'):
try:
info["memory_footprint_mb"] = model.get_memory_footprint() / 1e6
except:
pass
# Add GPU info if available
if torch.cuda.is_available():
info["gpu_count"] = torch.cuda.device_count()
info["current_gpu"] = torch.cuda.current_device()
info["gpu_memory_allocated"] = torch.cuda.memory_allocated() / 1e9
info["gpu_memory_cached"] = torch.cuda.memory_reserved() / 1e9
return info
except Exception as e:
logger.error(f"Error getting model info: {e}")
return {"status": "error", "error": str(e)}
def health_check() -> Dict[str, Any]:
"""Perform a health check of the system"""
try:
health_status = {
"timestamp": time.time(),
"torch_version": torch.__version__,
"cuda_available": torch.cuda.is_available(),
"model_loaded": model is not None,
"tokenizer_loaded": tokenizer is not None,
}
if torch.cuda.is_available():
health_status.update({
"cuda_version": torch.version.cuda,
"gpu_count": torch.cuda.device_count(),
"gpu_memory_total": torch.cuda.get_device_properties(0).total_memory / 1e9,
"gpu_memory_available": (torch.cuda.get_device_properties(
0).total_memory - torch.cuda.memory_allocated()) / 1e9
})
# Test a simple generation if model is loaded
if model is not None and tokenizer is not None:
try:
test_response = generate_response(
"You are a helpful assistant.",
"Say hello",
"Optimized for Speed"
)
health_status["test_generation"] = "success" if test_response else "failed"
except Exception as e:
health_status["test_generation"] = f"error: {str(e)}"
logger.info(f"Health check completed: {health_status}")
return health_status
except Exception as e:
logger.error(f"Error during health check: {e}")
return {"status": "error", "error": str(e)}
def validate_inputs(system_prompt: str, user_input: str, config_name: str) -> bool:
"""Validate inputs for generate_response"""
try:
if not isinstance(system_prompt, str) or not system_prompt.strip():
logger.error("System prompt must be a non-empty string")
return False
if not isinstance(user_input, str) or not user_input.strip():
logger.error("User input must be a non-empty string")
return False
if not validate_config(config_name):
return False
# Check input length
total_length = len(system_prompt) + len(user_input)
if total_length > 50000: # Reasonable limit
logger.warning(f"Input length is very long: {total_length} characters")
return True
except Exception as e:
logger.error(f"Error validating inputs: {e}")
return False
def generate_response(system_prompt: str, user_input: str, config_name: str = "Middle-ground") -> Optional[str]:
"""
Run inference with comprehensive error handling and logging.
Args:
system_prompt: System message/prompt
user_input: User's input message
config_name: Name of the inference configuration to use
Returns:
Generated response text, or None if generation failed
"""
try:
logger.info(f"Starting response generation with config: {config_name}")
# Validate inputs
if not validate_inputs(system_prompt, user_input, config_name):
logger.error("Input validation failed")
return None
# Load model
model, tokenizer = load_model()
if model is None or tokenizer is None:
logger.error("Failed to load model or tokenizer")
return None
# Get configuration
config = INFERENCE_CONFIGS[config_name]
logger.debug(f"Using config: {config}")
# Prepare messages
input_messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_input}
]
# Apply chat template
try:
prompt_text = tokenizer.apply_chat_template(
input_messages,
tokenize=False,
add_generation_prompt=True
)
logger.debug("Chat template applied successfully")
except Exception as e:
logger.error(f"Failed to apply chat template: {e}")
# Fallback to simple concatenation
prompt_text = f"System: {system_prompt}\nUser: {user_input}\nAssistant:"
logger.info("Using fallback prompt format")
# Tokenize input
try:
input_length = len(tokenizer.encode(prompt_text))
context_length = min(input_length, 3584) # Leave room for generation
inputs = tokenizer(
prompt_text,
return_tensors="pt",
truncation=True,
max_length=context_length,
padding=False
).to(model.device)
logger.debug(f"Input tokenized: {inputs['input_ids'].shape[1]} tokens")
except Exception as e:
logger.error(f"Failed to tokenize input: {e}")
return None
# Calculate generation parameters
actual_input_length = inputs['input_ids'].shape[1]
max_new_tokens = min(config["max_new_tokens_cap"], 4096 - actual_input_length - 10)
max_new_tokens = max(config["min_tokens"], max_new_tokens)
logger.debug(f"Generation params - Input length: {actual_input_length}, Max new tokens: {max_new_tokens}")
# Monitor memory before generation
monitor_memory()
# Generate response
try:
with torch.no_grad():
start_time = time.time()
generation_kwargs = {
"do_sample": config["do_sample"],
"temperature": config["temperature"],
"top_p": config["top_p"],
"use_cache": config["use_cache"],
"max_new_tokens": max_new_tokens,
"pad_token_id": tokenizer.pad_token_id,
"eos_token_id": tokenizer.eos_token_id,
"output_attentions": False,
"output_hidden_states": False,
"return_dict_in_generate": False,
}
outputs = model.generate(**inputs, **generation_kwargs)
inference_time = time.time() - start_time
logger.info(f"Generation completed in {inference_time:.2f} seconds")
except torch.cuda.OutOfMemoryError:
logger.error("CUDA out of memory during generation")
# Try to free memory
gc.collect()
torch.cuda.empty_cache()
return None
except Exception as e:
logger.error(f"Generation failed: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
return None
# Monitor memory after generation
monitor_memory()
# Clean up GPU memory
try:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
logger.warning(f"Error during cleanup: {e}")
# Decode response
try:
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract generated response
if prompt_text in full_text:
response_start = full_text.find(prompt_text) + len(prompt_text)
generated_response = full_text[response_start:].strip()
else:
# More robust fallback
generated_response = full_text.strip()
try:
# Look for common assistant/response indicators
response_indicators = ["Assistant:", "<|assistant|>", "[/INST]", "Response:"]
for indicator in response_indicators:
if indicator in full_text:
parts = full_text.split(indicator)
if len(parts) > 1:
generated_response = parts[-1].strip()
break
# If no indicator found, try to remove the input part
if user_input in full_text:
parts = full_text.split(user_input)
if len(parts) > 1:
generated_response = parts[-1].strip()
except Exception as extract_error:
logger.warning(f"Error extracting response: {extract_error}")
generated_response = full_text.strip()
logger.debug(f"Extracted response: {generated_response[:100]}...")
except Exception as e:
logger.error(f"Failed to decode response: {e}")
return None
# Process tool calls
try:
processed_response = process_tool_calls(generated_response)
logger.debug("Tool call processing completed")
except Exception as e:
logger.error(f"Error processing tool calls: {e}")
processed_response = generated_response # Use original if tool processing fails
# Log final statistics
input_tokens = inputs['input_ids'].shape[1]
output_tokens = outputs.shape[1] - input_tokens
logger.info(
f"Generation stats - Input tokens: {input_tokens}, Output tokens: {output_tokens}, Time: {inference_time:.2f}s")
logger.info("Response generation completed successfully")
return processed_response
except Exception as e:
logger.error(f"Unexpected error in generate_response: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
return None
def safe_generate_response(system_prompt: str, user_input: str, config_name: str = "Middle-ground",
max_retries: int = 2) -> Optional[str]:
"""
Generate response with retry logic and fallback options
Args:
system_prompt: System message/prompt
user_input: User's input message
config_name: Name of the inference configuration to use
max_retries: Maximum number of retry attempts
Returns:
Generated response text, or None if all attempts failed
"""
for attempt in range(max_retries + 1):
try:
logger.info(f"Generation attempt {attempt + 1}/{max_retries + 1}")
response = generate_response(system_prompt, user_input, config_name)
if response is not None:
logger.info(f"Generation successful on attempt {attempt + 1}")
return response
if attempt < max_retries:
logger.warning(f"Generation failed on attempt {attempt + 1}, retrying...")
# Clean up before retry
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
time.sleep(1) # Brief pause before retry
except Exception as e:
logger.error(f"Error on generation attempt {attempt + 1}: {e}")
if attempt < max_retries:
logger.info("Cleaning up and retrying...")
try:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
except:
pass
time.sleep(2) # Longer pause after error
logger.error(f"All {max_retries + 1} generation attempts failed")
return None
# Context manager for safe model operations
class ModelContext:
"""Context manager for safe model operations with automatic cleanup"""
def __init__(self, auto_cleanup: bool = True):
self.auto_cleanup = auto_cleanup
self.original_model = None
self.original_tokenizer = None
def __enter__(self):
global model, tokenizer
self.original_model = model
self.original_tokenizer = tokenizer
logger.debug("Entered model context")
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if exc_type is not None:
logger.error(f"Exception in model context: {exc_type.__name__}: {exc_val}")
if self.auto_cleanup:
try:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug("Model context cleanup completed")
except Exception as e:
logger.warning(f"Error during model context cleanup: {e}")
logger.debug("Exited model context")
def cleanup_resources():
"""Clean up model resources"""
global model, tokenizer
try:
if model is not None:
del model
model = None
logger.info("Model removed from memory")
if tokenizer is not None:
del tokenizer
tokenizer = None
logger.info("Tokenizer removed from memory")
# Clean up GPU memory
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
logger.info("GPU memory cleaned up")
logger.info("Resource cleanup completed")
except Exception as e:
logger.error(f"Error during resource cleanup: {e}")
def unload_model():
"""Explicitly unload the model and tokenizer"""
try:
logger.info("Unloading model and tokenizer...")
cleanup_resources()
logger.info("Model and tokenizer unloaded successfully")
return True
except Exception as e:
logger.error(f"Error unloading model: {e}")
return False
def reload_model():
"""Reload the model and tokenizer"""
try:
logger.info("Reloading model and tokenizer...")
# First clean up existing resources
cleanup_resources()
time.sleep(1) # Brief pause
# Load fresh model and tokenizer
model, tokenizer = load_model()
if model is not None and tokenizer is not None:
logger.info("Model and tokenizer reloaded successfully")
return True
else:
logger.error("Failed to reload model and tokenizer")
return False
except Exception as e:
logger.error(f"Error reloading model: {e}")
return False
def get_available_tools() -> Dict[str, Any]:
"""Get information about available tools"""
try:
return {
"tools": AVAILABLE_TOOLS,
"count": len(AVAILABLE_TOOLS),
"tool_names": list(AVAILABLE_TOOLS.keys())
}
except Exception as e:
logger.error(f"Error getting available tools: {e}")
return {"error": str(e)}
def add_tool(tool_name: str, tool_function, description: str, parameters: Dict[str, str]):
"""Add a new tool to the registry"""
try:
if not tool_name or not isinstance(tool_name, str):
raise ValueError("Tool name must be a non-empty string")
if not callable(tool_function):
raise ValueError("Tool function must be callable")
if tool_name in AVAILABLE_TOOLS:
logger.warning(f"Tool '{tool_name}' already exists, replacing...")
AVAILABLE_TOOLS[tool_name] = {
"function": tool_function,
"description": description,
"parameters": parameters or {}
}
logger.info(f"Tool '{tool_name}' added successfully")
return True
except Exception as e:
logger.error(f"Error adding tool '{tool_name}': {e}")
return False
def remove_tool(tool_name: str):
"""Remove a tool from the registry"""
try:
if tool_name not in AVAILABLE_TOOLS:
logger.warning(f"Tool '{tool_name}' not found")
return False
del AVAILABLE_TOOLS[tool_name]
logger.info(f"Tool '{tool_name}' removed successfully")
return True
except Exception as e:
logger.error(f"Error removing tool '{tool_name}': {e}")
return False
# Example usage and testing functions
def run_example():
"""Run an example to test the system"""
try:
logger.info("Running example test")
# Test health check
health = health_check()
logger.info(f"System health: {health}")
# Test model loading
model_obj, tokenizer_obj = load_model()
if model_obj is None or tokenizer_obj is None:
logger.error("Failed to load model for example")
return False
# Test generation
with ModelContext():
response = safe_generate_response(
"You are a helpful mathematical assistant.",
"What is 15 + 25? Use the calculate_numbers tool.",
"Optimized for Speed"
)
if response:
logger.info(f"Example response: {response}")
return True
else:
logger.error("Example generation failed")
return False
except Exception as e:
logger.error(f"Error in example: {e}")
return False
def run_batch_test():
"""Run batch test with multiple inputs"""
try:
logger.info("Running batch test")
test_cases = [
{
"system": "You are a helpful assistant.",
"user": "Hello, how are you?",
"config": "Optimized for Speed"
},
{
"system": "You are a mathematical assistant.",
"user": "Calculate 10 * 5 using the calculate_numbers tool.",
"config": "Middle-ground"
},
{
"system": "You are a helpful assistant.",
"user": "Explain the concept of machine learning in simple terms.",
"config": "Full Capacity"
}
]
results = []
for i, test_case in enumerate(test_cases):
logger.info(f"Running test case {i + 1}/{len(test_cases)}")
with ModelContext():
response = safe_generate_response(
test_case["system"],
test_case["user"],
test_case["config"]
)
results.append({
"test_case": i + 1,
"success": response is not None,
"response": response[:100] + "..." if response and len(response) > 100 else response
})
success_count = sum(1 for r in results if r["success"])
logger.info(f"Batch test completed: {success_count}/{len(test_cases)} successful")
return results
except Exception as e:
logger.error(f"Error in batch test: {e}")
return []
def benchmark_generation(num_runs: int = 5):
"""Benchmark generation performance"""
try:
logger.info(f"Running benchmark with {num_runs} iterations")
# Load model first
model_obj, tokenizer_obj = load_model()
if model_obj is None or tokenizer_obj is None:
logger.error("Failed to load model for benchmark")
return None
system_prompt = "You are a helpful assistant."
user_input = "Explain the importance of renewable energy in 2-3 sentences."
times = []
token_counts = []
for i in range(num_runs):
logger.info(f"Benchmark run {i + 1}/{num_runs}")
start_time = time.time()
response = generate_response(system_prompt, user_input, "Middle-ground")
end_time = time.time()
if response:
generation_time = end_time - start_time
times.append(generation_time)
# Estimate token count (rough approximation)
token_count = len(response.split()) * 1.3 # Rough tokens-to-words ratio
token_counts.append(token_count)
logger.info(f"Run {i + 1}: {generation_time:.2f}s, ~{token_count:.0f} tokens")
else:
logger.warning(f"Run {i + 1} failed")
if times:
avg_time = sum(times) / len(times)
avg_tokens = sum(token_counts) / len(token_counts)
tokens_per_sec = avg_tokens / avg_time if avg_time > 0 else 0
benchmark_results = {
"runs": num_runs,
"successful_runs": len(times),
"avg_time": avg_time,
"avg_tokens": avg_tokens,
"tokens_per_second": tokens_per_sec,
"min_time": min(times),
"max_time": max(times)
}
logger.info(f"Benchmark results: {benchmark_results}")
return benchmark_results
else:
logger.error("All benchmark runs failed")
return None
except Exception as e:
logger.error(f"Error in benchmark: {e}")
return None
# API-like interface functions
def initialize_system():
"""Initialize the inference system"""
try:
logger.info("Initializing inference system...")
# Check system requirements
if not check_system_requirements():
return {"status": "error", "message": "System requirements not met"}
# Load model and tokenizer
model_obj, tokenizer_obj = load_model()
if model_obj is None or tokenizer_obj is None:
return {"status": "error", "message": "Failed to load model"}
# Run health check
health = health_check()
if "error" in health:
return {"status": "warning", "message": "System initialized with warnings", "health": health}
logger.info("Inference system initialized successfully")
return {"status": "success", "message": "System initialized successfully", "health": health}
except Exception as e:
logger.error(f"Error initializing system: {e}")
return {"status": "error", "message": str(e)}
def shutdown_system():
"""Shutdown the inference system cleanly"""
try:
logger.info("Shutting down inference system...")
cleanup_resources()
logger.info("Inference system shutdown complete")
return {"status": "success", "message": "System shutdown successfully"}
except Exception as e:
logger.error(f"Error during shutdown: {e}")
return {"status": "error", "message": str(e)}
if __name__ == "__main__":
"""Main entry point for testing"""
try:
logger.info("Starting model inference system")
# Initialize system
init_result = initialize_system()
logger.info(f"Initialization result: {init_result}")
if init_result["status"] != "error":
# Run example
success = run_example()
if success:
logger.info("System test completed successfully")
# Optionally run additional tests
print("\nWould you like to run additional tests? (y/n)")
try:
choice = input().lower().strip()
if choice == 'y':
logger.info("Running batch test...")
batch_results = run_batch_test()
logger.info(f"Batch test results: {batch_results}")
logger.info("Running benchmark...")
benchmark_results = benchmark_generation(3)
logger.info(f"Benchmark results: {benchmark_results}")
except (EOFError, KeyboardInterrupt):
logger.info("Skipping additional tests")
else:
logger.error("System test failed")
# Shutdown
shutdown_result = shutdown_system()
logger.info(f"Shutdown result: {shutdown_result}")
except KeyboardInterrupt:
logger.info("Interrupted by user")
cleanup_resources()
except Exception as e:
logger.error(f"Unexpected error in main: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
cleanup_resources()
finally:
logger.info("Program terminated") |