File size: 31,901 Bytes
1a4f599 ddc41f5 02a42b8 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 60fc856 ddc41f5 1a4f599 60fc856 1a4f599 60fc856 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 ddc41f5 1a4f599 02a42b8 1a4f599 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
import plotly.graph_objects as go
import datetime
import json
import random
import os
#from model_handler import generate_response, get_inference_configs
#from enhanced_model_handler import generate_response, get_inference_configs
from model_handler_ollama import generate_response, get_inference_configs
import torch
# Configuration for datasets
DATASET_CONFIGS = {
'Loggenix Synthetic AI Tasks Eval (with outputs)-small': {
'repo_id': 'kshitijthakkar/loggenix-synthetic-ai-tasks-eval-with-outputs',
'split': 'train'
},
'Loggenix Synthetic AI Tasks Eval (with outputs) v5-large': {
'repo_id': 'kshitijthakkar/loggenix-synthetic-ai-tasks-eval_v5-with-outputs',
'split': 'train'
},
'Loggenix Synthetic AI Tasks Eval (with outputs) v6-large': {
'repo_id': 'kshitijthakkar/loggenix-synthetic-ai-tasks-eval_v6-with-outputs',
'split': 'train'
}
}
# Load main dataset for inference tab
def load_inference_dataset():
"""Load the main dataset for inference use case"""
try:
print("Loading synthetic-ai-tasks-eval-v5 dataset...")
dataset = load_dataset(
'kshitijthakkar/synthetic-ai-tasks-eval-v5',
split='train',
trust_remote_code=True
)
df = dataset.to_pandas()
print(f"β Successfully loaded: {len(df)} rows, {len(df.columns)} columns")
return df
except Exception as e:
print(f"β Error loading dataset: {str(e)}")
return pd.DataFrame({'Error': [f'Failed to load: {str(e)}']})
# Load dataset for eval samples tab
def load_eval_datasets():
"""Load all datasets for evaluation samples"""
datasets = {}
for display_name, config in DATASET_CONFIGS.items():
try:
print(f"Loading {display_name}...")
dataset = load_dataset(
config['repo_id'],
split=config['split'],
trust_remote_code=True
)
df = dataset.to_pandas()
datasets[display_name] = df
print(f"β Successfully loaded {display_name}: {len(df)} rows")
except Exception as e:
print(f"β Error loading {display_name}: {str(e)}")
datasets[display_name] = pd.DataFrame({
'Error': [f'Failed to load: {str(e)}'],
'Dataset': [config['repo_id']]
})
return datasets
# Load datasets
INFERENCE_DATASET = load_inference_dataset()
EVAL_DATASETS = load_eval_datasets()
# ===== TAB 1: INFERENCE USE CASE WITH INTEGRATED FLAGGING =====
def get_task_types():
"""Get unique task types from inference dataset"""
if 'task_type' in INFERENCE_DATASET.columns:
task_types = INFERENCE_DATASET['task_type'].unique().tolist()
return [str(t) for t in task_types if pd.notna(t)]
return ["No task types available"]
def get_task_by_type(task_type):
"""Get task content by task type"""
if 'task_type' in INFERENCE_DATASET.columns and 'task' in INFERENCE_DATASET.columns:
filtered = INFERENCE_DATASET[INFERENCE_DATASET['task_type'] == task_type]
if len(filtered) > 0:
return str(filtered.iloc[0]['task'])
return "No task found for this type"
def chat_interface_with_inference(prompt, history, system_prompt, inference_config):
"""Enhanced chat interface with model inference and history"""
if not prompt.strip():
return history, ""
# Add user message to history
history.append(("You", prompt))
try:
if not system_prompt.strip():
response = "Please select a task type to load system prompt first."
else:
# Get inference configuration
configs = get_inference_configs()
config = configs.get(inference_config, configs["Optimized for Speed"])
# Run inference using the model
response = generate_response(
system_prompt=system_prompt,
user_input=prompt,
config_name=inference_config
)
# Format and add AI response to history
formatted_response = f"**AI Assistant:**\n{response}"
history.append(("AI Assistant", formatted_response))
except Exception as e:
error_msg = f"**AI Assistant:**\nError during inference: {str(e)}"
history.append(("AI Assistant", error_msg))
return history, ""
def flag_response(history, flagged_message, flag_reason):
"""Flag a response"""
if not flagged_message or flagged_message == "No responses available":
return "Invalid message selection."
try:
flagged_index = int(flagged_message.split()[1][:-1])
if flagged_index >= len(history) or history[flagged_index][0] != "AI Assistant":
return "You can only flag assistant responses."
flagged_message_content = history[flagged_index][1]
log_entry = {
"timestamp": datetime.datetime.now().isoformat(),
"flag_reason": str(flag_reason),
"flagged_message": str(flagged_message_content),
"conversation_context": history,
}
os.makedirs("logs", exist_ok=True)
with open("logs/flagged_responses.log", "a") as f:
f.write(json.dumps(log_entry) + "\n")
return f"Response flagged successfully: {flag_reason}"
except Exception as e:
return f"Error flagging response: {str(e)}"
def get_assistant_responses(history):
"""Get dropdown options for assistant responses"""
responses = [
f"Response {i}: {str(msg[1])[:50]}..."
for i, msg in enumerate(history)
if msg[0] == "AI Assistant"
]
if not responses:
responses = ["No responses available"]
return gr.update(choices=responses, value=responses[0] if responses else "No responses available")
def display_selected_message(selected_index, history):
"""Display the selected flagged message"""
if selected_index == "No responses available":
return "No responses available"
try:
flagged_index = int(selected_index.split()[1][:-1])
if flagged_index < len(history) and history[flagged_index][0] == "AI Assistant":
return history[flagged_index][1]
else:
return "Invalid selection."
except Exception as e:
return f"Error: {str(e)}"
def clear_inference_history():
"""Clear chat history for inference tab"""
return [], gr.update(choices=["No responses available"], value="No responses available")
# ===== TAB 2: EVAL SAMPLES =====
def update_eval_table(dataset_name):
"""Update eval table based on selected dataset"""
if dataset_name in EVAL_DATASETS:
return EVAL_DATASETS[dataset_name].head(100)
return pd.DataFrame()
def get_eval_dataset_info(dataset_name):
"""Get info about selected eval dataset"""
if dataset_name in EVAL_DATASETS:
df = EVAL_DATASETS[dataset_name]
return f"""
**Dataset**: {dataset_name}
- **Rows**: {len(df):,}
- **Columns**: {len(df.columns)}
- **Column Names**: {', '.join(df.columns.tolist())}
"""
return "No dataset selected"
# def get_task_types_for_eval(dataset_name):
# """Get unique task types from selected eval dataset"""
# if dataset_name in EVAL_DATASETS and 'task_type' in EVAL_DATASETS[dataset_name].columns:
# task_types = EVAL_DATASETS[dataset_name]['task_type'].unique().tolist()
# return [str(t) for t in task_types if pd.notna(t)]
# return ["No task types available"]
def get_task_types_for_eval(dataset_name):
"""Get unique task types from selected eval dataset"""
if dataset_name in EVAL_DATASETS and 'task_type' in EVAL_DATASETS[dataset_name].columns:
task_types = EVAL_DATASETS[dataset_name]['task_type'].unique().tolist()
# The correct way is to return the list directly, not a joined string.
# The list comprehension `[str(t) for t in task_types if pd.notna(t)]` already does this.
return [str(t) for t in task_types if pd.notna(t)]
return ["No task types available"]
def get_tasks_by_type_eval(dataset_name, task_type):
"""Get tasks filtered by dataset and task type"""
if (dataset_name in EVAL_DATASETS and
'task_type' in EVAL_DATASETS[dataset_name].columns and
'task' in EVAL_DATASETS[dataset_name].columns):
filtered = EVAL_DATASETS[dataset_name][EVAL_DATASETS[dataset_name]['task_type'] == task_type]
if len(filtered) > 0:
# Create display options with index and truncated task content
tasks = []
for idx, row in filtered.iterrows():
task_preview = str(row['task'])[:100] + "..." if len(str(row['task'])) > 100 else str(row['task'])
tasks.append(f"Row {idx}: {task_preview}")
return tasks
return ["No tasks found"]
# def get_selected_row_data(dataset_name, task_type, selected_task):
# """Get all data for the selected row"""
# if not selected_task or selected_task == "No tasks found":
# return "", "", "", "", "", "",""
#
# try:
# # Extract row index from selected_task
# row_idx = int(selected_task.split("Row ")[1].split(":")[0])
#
# if dataset_name in EVAL_DATASETS:
# df = EVAL_DATASETS[dataset_name]
# if row_idx in df.index:
# row = df.loc[row_idx]
#
# # Extract all fields with safe handling for missing columns
# task = str(row.get('task', 'N/A'))
# task_type_val = str(row.get('task_type', 'N/A'))
# input_model = str(row.get('input_model', 'N/A'))
# expected_response = str(row.get('expected_response', 'N/A'))
# loggenix_output = str(row.get('loggenix_output', 'N/A'))
# output_model = str(row.get('output_model', 'N/A'))
# input_text = str(row.get('input', 'N/A'))
#
#
# return task_type_val, input_model, output_model, task, input_text, expected_response, loggenix_output
#
# except Exception as e:
# return f"Error: {str(e)}", "", "", "", "", "", "", ""
#
# return "", "", "", "", "", "", ""
def get_selected_row_data_by_type(dataset_name, task_type):
"""Get all data for the first row of a selected dataset and task type"""
if (dataset_name in EVAL_DATASETS and
'task_type' in EVAL_DATASETS[dataset_name].columns and
'task' in EVAL_DATASETS[dataset_name].columns):
filtered = EVAL_DATASETS[dataset_name][EVAL_DATASETS[dataset_name]['task_type'] == task_type]
if len(filtered) > 0:
row = filtered.iloc[0] # Get the first row
# Extract all fields with safe handling for missing columns
task = str(row.get('task', 'N/A'))
input_model = str(row.get('input_model', 'N/A'))
expected_response = str(row.get('expected_response', 'N/A'))
loggenix_output = str(row.get('loggenix_output', 'N/A'))
output_model = str(row.get('output_model', 'N/A'))
input_text = str(row.get('input', 'N/A'))
return input_model, output_model, task, input_text, expected_response, loggenix_output
return "", "", "", "", "", ""
# ===== TAB 3: VIEW FLAGGED RESPONSES =====
def read_flagged_messages():
"""Read flagged messages from log file"""
try:
if not os.path.exists("logs/flagged_responses.log"):
return pd.DataFrame()
with open("logs/flagged_responses.log", "r") as f:
flagged_messages = f.readlines()
if not flagged_messages:
return pd.DataFrame()
table_data = []
for entry in flagged_messages:
data = json.loads(entry)
table_data.append({
"Timestamp": data.get("timestamp", "N/A"),
"Flag Reason": data.get("flag_reason", "N/A"),
"Flagged Message": data.get("flagged_message", "N/A")[:100] + "...",
"Conversation Context": str(len(data.get("conversation_context", []))) + " messages"
})
return pd.DataFrame(table_data)
except Exception as e:
return pd.DataFrame({"Error": [f"Error reading flagged messages: {str(e)}"]})
def handle_row_select(evt: gr.SelectData):
"""Handle row selection in flagged messages table"""
try:
if not os.path.exists("logs/flagged_responses.log"):
return []
with open("logs/flagged_responses.log", "r") as f:
flagged_messages_log = f.readlines()
if evt.index[0] < len(flagged_messages_log):
selected_entry = json.loads(flagged_messages_log[evt.index[0]])
conversation_context = selected_entry.get("conversation_context", [])
return conversation_context
return []
except Exception as e:
return [("System", f"Error loading conversation: {str(e)}")]
# ===== MAIN INTERFACE =====
def create_interface():
with gr.Blocks(title="AI Tasks Evaluation Suite", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π€ AI Tasks Evaluation Suite")
gr.Markdown("Comprehensive platform for AI model evaluation and testing")
with gr.Tabs():
# TAB 1: INFERENCE USE CASE WITH INTEGRATED FLAGGING
with gr.Tab("π Inference Use Case"):
gr.Markdown("## Model Inference Testing with Response Flagging")
with gr.Row():
with gr.Column(scale=1):
# Task type dropdown
task_type_dropdown = gr.Dropdown(
choices=get_task_types(),
value=get_task_types()[0] if get_task_types() else None,
label="Task Type",
info="Select task type to load system prompt"
)
# Inference configuration
inference_config = gr.Dropdown(
choices=list(get_inference_configs().keys()),
value="Optimized for Speed",
label="Inference Configuration",
info="Select inference optimization level"
)
with gr.Column(scale=2):
# System prompt (editable)
system_prompt = gr.Textbox(
label="System Prompt (Editable)",
lines=6,
max_lines=10,
placeholder="Select a task type to load system prompt...",
interactive=True
)
# Chat interface section
gr.Markdown("### π¬ Chat Interface")
with gr.Row():
with gr.Column(scale=2):
# Chat display (replacing the old textbox)
chat_display = gr.Chatbot(label="Conversation History", height=400)
chat_history_state = gr.State([])
# Chat input
with gr.Row():
chat_input = gr.Textbox(
placeholder="Enter your message here...",
label="Your Message",
scale=4
)
send_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
clear_chat_btn = gr.Button("ποΈ Clear History", variant="secondary")
# Flagging section
with gr.Column(scale=1):
gr.Markdown("### π© Flag Response")
flagged_message_index = gr.Dropdown(
label="Select a response to flag",
choices=["No responses available"],
value="No responses available",
interactive=True
)
selected_message_display = gr.Textbox(
label="Selected Response",
interactive=False,
lines=4,
max_lines=6
)
flag_reason = gr.Textbox(
placeholder="Enter reason for flagging...",
label="Reason for Flagging"
)
flag_btn = gr.Button("π© Flag Response", variant="stop")
flag_output = gr.Textbox(label="Flagging Status", visible=True, lines=2)
# Event handlers for Tab 1
task_type_dropdown.change(
fn=get_task_by_type,
inputs=[task_type_dropdown],
outputs=[system_prompt]
)
# Chat functionality
send_btn.click(
chat_interface_with_inference,
inputs=[chat_input, chat_history_state, system_prompt, inference_config],
outputs=[chat_display, chat_input]
).then(
lambda x: x, # Update state
inputs=[chat_display],
outputs=[chat_history_state]
).then(
get_assistant_responses,
inputs=[chat_history_state],
outputs=[flagged_message_index]
)
# Enter key support for chat input
chat_input.submit(
chat_interface_with_inference,
inputs=[chat_input, chat_history_state, system_prompt, inference_config],
outputs=[chat_display, chat_input]
).then(
lambda x: x, # Update state
inputs=[chat_display],
outputs=[chat_history_state]
).then(
get_assistant_responses,
inputs=[chat_history_state],
outputs=[flagged_message_index]
)
clear_chat_btn.click(
clear_inference_history,
outputs=[chat_display, flagged_message_index]
).then(
lambda: [],
outputs=[chat_history_state]
)
# Flagging functionality
flagged_message_index.change(
display_selected_message,
inputs=[flagged_message_index, chat_history_state],
outputs=[selected_message_display]
)
flag_btn.click(
flag_response,
inputs=[chat_history_state, flagged_message_index, flag_reason],
outputs=[flag_output]
)
# TAB 2: EVAL SAMPLES
# with gr.Tab("π Eval Samples"):
# gr.Markdown("## Dataset Evaluation Samples")
#
# with gr.Row():
# with gr.Column(scale=1):
# eval_dataset_dropdown = gr.Dropdown(
# choices=list(EVAL_DATASETS.keys()),
# value=list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else None,
# label="Select Dataset",
# info="Choose evaluation dataset to view"
# )
#
# eval_dataset_info = gr.Markdown(
# get_eval_dataset_info(list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else "")
# )
#
# with gr.Row():
# eval_table = gr.Dataframe(
# value=update_eval_table(list(EVAL_DATASETS.keys())[0]) if EVAL_DATASETS else pd.DataFrame(),
# label="Dataset Table",
# max_height=800,
# min_width=800,
# interactive=True,
# wrap=True,
# show_fullscreen_button=True,
# show_copy_button=True,
# show_row_numbers=True,
# show_search="search",
# column_widths=["80px","80px","80px","150px","250px","250px","250px"]
# )
#
# # Event handlers for Tab 2
# eval_dataset_dropdown.change(
# fn=lambda x: (update_eval_table(x), get_eval_dataset_info(x)),
# inputs=[eval_dataset_dropdown],
# outputs=[eval_table, eval_dataset_info]
# )
with gr.Tab("π Eval Samples"):
gr.Markdown("## Dataset Evaluation Samples")
gr.Markdown("Select dataset and task type to view detailed information")
with gr.Row():
with gr.Column(scale=1):
eval_dataset_dropdown = gr.Dropdown(
choices=list(EVAL_DATASETS.keys()),
value=list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else None,
label="Select Dataset",
info="Choose evaluation dataset to view"
)
eval_task_type_dropdown = gr.Dropdown(
choices=[],
label="Select Task Type",
info="Choose task type from selected dataset",
allow_custom_value=True
)
with gr.Column(scale=1):
eval_dataset_info = gr.Markdown(
get_eval_dataset_info(list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else "")
)
# Task details section
gr.Markdown("### Task Details")
with gr.Row():
input_model_field = gr.Textbox(
label="input_model",
lines=1,
interactive=False
)
output_model_field = gr.Textbox(
label="output_model",
lines=1,
interactive=False
)
with gr.Row():
task_field = gr.Textbox(
label="Task",
lines=2,
max_lines=5,
interactive=False
)
with gr.Row():
input_field = gr.Textbox(
label="input",
lines=12,
max_lines=20,
interactive=False
)
# Large text fields for outputs side by side
gr.Markdown("### Expected vs Actual Response Comparison")
with gr.Row():
loggenix_output_field = gr.Textbox(
label="Expected Response",
lines=30,
max_lines=40,
interactive=False
)
expected_response_field = gr.Textbox(
label="Loggenix Output",
lines=30,
max_lines=40,
interactive=False
)
# Event handlers for Tab 2
# eval_dataset_dropdown.change(
# fn=lambda x: (get_eval_dataset_info(x), get_task_types_for_eval(x), None),
# inputs=[eval_dataset_dropdown],
# outputs=[eval_dataset_info, eval_task_type_dropdown]
# )
# Event handlers for Tab 2
# eval_dataset_dropdown.change(
# fn=lambda x: (get_eval_dataset_info(x), get_task_types_for_eval(x)),
# inputs=[eval_dataset_dropdown],
# outputs=[eval_dataset_info, eval_task_type_dropdown]
# )
# Define a new function instead of lambda for clarity
def update_eval_components(dataset_name):
info = get_eval_dataset_info(dataset_name)
task_types = get_task_types_for_eval(dataset_name)
return info, gr.update(choices=task_types,
value=task_types[0] if task_types else "No task types available")
# In the event handlers for Tab 2, replace the existing .change with this:
eval_dataset_dropdown.change(
fn=update_eval_components,
inputs=[eval_dataset_dropdown],
outputs=[eval_dataset_info, eval_task_type_dropdown]
)
eval_task_type_dropdown.change(
fn=get_selected_row_data_by_type,
inputs=[eval_dataset_dropdown, eval_task_type_dropdown],
outputs=[input_model_field, output_model_field, task_field, input_field,
loggenix_output_field, expected_response_field]
)
# NOTE: The get_tasks_by_type_eval and eval_task_dropdown.change handlers are removed as per request.
# TAB 3: VIEW FLAGGED RESPONSES (RENAMED FROM TAB 4)
with gr.Tab("π View Flagged Responses"):
gr.Markdown("## Review Flagged Responses")
with gr.Row():
with gr.Column():
flagged_messages_display = gr.Dataframe(
headers=["Timestamp", "Flag Reason", "Flagged Message", "Conversation Context"],
interactive=False,
max_height=400
)
refresh_btn = gr.Button("π Refresh", variant="primary")
with gr.Column():
conversation_context_display = gr.Chatbot(
label="Conversation Context",
height=400
)
# Event handlers for Tab 3
flagged_messages_display.select(
handle_row_select,
outputs=[conversation_context_display]
)
refresh_btn.click(
read_flagged_messages,
outputs=[flagged_messages_display]
)
# TAB 4: MODEL EVAL RESULTS (MOVED FROM TAB 5)
with gr.Tab("π Model Eval Results"):
gr.Markdown("## Model Evaluation Results")
gr.Markdown("### π§ Coming Soon")
gr.Markdown(
"This section will display comprehensive model evaluation metrics, charts, and performance analysis.")
# Placeholder content
with gr.Row():
with gr.Column():
gr.Markdown("#### Evaluation Metrics")
gr.Markdown("- Accuracy scores")
gr.Markdown("- Performance benchmarks")
gr.Markdown("- Comparative analysis")
with gr.Column():
gr.Markdown("#### Visualization")
gr.Markdown("- Performance charts")
gr.Markdown("- Score distributions")
gr.Markdown("- Trend analysis")
# TAB 5: ABOUT (MOVED FROM TAB 6)
with gr.Tab("βΉοΈ About"):
gr.Markdown("## About Loggenix MOE Model")
gr.Markdown("""
### Model: `kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.2-finetuned-tool`
This is a fine-tuned Mixture of Experts (MOE) model designed for specialized AI tasks with tool calling capabilities.
#### Key Features:
- **Architecture**: MOE with 0.3B total parameters, 0.1B active parameters
- **Training**: Fine-tuned with learning rate 7e-5, batch size 16
- **Hardware**: Optimized for RTX 4090 GPU
- **Capabilities**: Tool calling, instruction following, task-specific responses
#### Model Specifications:
- **Total Parameters**: 0.3B
- **Active Parameters**: 0.1B
- **Context Length**: 4096 tokens
- **Precision**: FP16 for optimal performance
- **Flash Attention**: Supported for faster inference
#### Sample Inference Code:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model and tokenizer
model_id = "kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.2-finetuned-tool"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2"
).eval()
# Prepare messages
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Calculate 25 + 37"}
]
# Format and generate
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
pad_token_id=tokenizer.pad_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
#### Tool Calling Support:
The model supports structured tool calling for mathematical operations, data analysis, and other specialized tasks.
#### Performance Optimizations:
- **Speed Mode**: Max 512 new tokens for fast responses
- **Balanced Mode**: Max 2048 new tokens for comprehensive answers
- **Full Capacity**: Dynamic token allocation up to context limit
---
**Developed by**: Kshitij Thakkar
**Version**: v6.2
**License**: Please check model repository for licensing details
""")
# Load initial data
demo.load(
fn=read_flagged_messages,
outputs=[flagged_messages_display]
)
return demo
# Launch the application
if __name__ == "__main__":
print("Starting AI Tasks Evaluation Suite...")
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True,
mcp_server=True
) |