Spaces:
Build error
Build error
Commit
·
0ec25a0
1
Parent(s):
7bd4255
feat(app): support more models and datasets
Browse files
app.py
CHANGED
|
@@ -1,104 +1,321 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
import json
|
| 4 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
| 5 |
from datasets import load_dataset
|
|
|
|
| 6 |
import plotly.io as pio
|
| 7 |
import plotly.graph_objects as go
|
| 8 |
import plotly.express as px
|
|
|
|
| 9 |
import pandas as pd
|
| 10 |
from sklearn.metrics import confusion_matrix
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
tokenizer = AutoTokenizer.from_pretrained(endpoint)
|
| 14 |
-
model = AutoModelForSequenceClassification.from_pretrained(endpoint)
|
| 15 |
-
return tokenizer, model
|
| 16 |
|
| 17 |
|
| 18 |
def test_model(tokenizer, model, test_data: list, label_map: dict):
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
def generate_label_map(dataset):
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
return label_map
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
true_labels = [r[1] for r in results]
|
| 36 |
pred_labels = [r[2] for r in results]
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
fig = go.Figure(
|
| 42 |
-
data=go.Heatmap(
|
| 43 |
-
z=cm,
|
| 44 |
-
x=list(label_map.values()),
|
| 45 |
-
y=list(label_map.values()),
|
| 46 |
-
colorscale='Viridis',
|
| 47 |
-
colorbar=dict(title='Number of Samples')
|
| 48 |
-
),
|
| 49 |
-
layout=go.Layout(
|
| 50 |
-
title='Confusion Matrix',
|
| 51 |
-
xaxis=dict(title='Predicted Labels'),
|
| 52 |
-
yaxis=dict(title='True Labels', autorange='reversed')
|
| 53 |
-
)
|
| 54 |
-
)
|
| 55 |
|
| 56 |
-
fig.update_layout(height=600, width=800)
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
return fig
|
| 66 |
|
| 67 |
-
def app(model_endpoint: str, dataset_name: str, config_name: str, dataset_split: str, num_samples: int):
|
| 68 |
-
tokenizer, model = load_model(model_endpoint)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
interface = gr.Interface(
|
| 85 |
fn=app,
|
| 86 |
inputs=[
|
| 87 |
-
gr.inputs.
|
| 88 |
-
|
|
|
|
|
|
|
| 89 |
gr.inputs.Textbox(lines=1, label="Dataset Name",
|
| 90 |
-
placeholder="ex: glue"),
|
| 91 |
gr.inputs.Textbox(lines=1, label="Config Name",
|
| 92 |
-
placeholder="ex: sst2"),
|
| 93 |
gr.inputs.Dropdown(
|
| 94 |
-
choices=["train", "validation", "test"], label="Dataset Split"),
|
| 95 |
gr.inputs.Number(default=100, label="Number of Samples"),
|
|
|
|
|
|
|
|
|
|
| 96 |
],
|
| 97 |
-
# outputs=gr.
|
| 98 |
# outputs=gr.outputs.HTML(),
|
| 99 |
-
outputs=gr.Plot(),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
title="Fairness and Bias Testing",
|
| 101 |
-
description="Enter a model
|
| 102 |
)
|
| 103 |
|
| 104 |
# Define the label map globally
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
import json
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForQuestionAnswering
|
| 5 |
+
|
| 6 |
from datasets import load_dataset
|
| 7 |
+
import datasets
|
| 8 |
import plotly.io as pio
|
| 9 |
import plotly.graph_objects as go
|
| 10 |
import plotly.express as px
|
| 11 |
+
from plotly.subplots import make_subplots
|
| 12 |
import pandas as pd
|
| 13 |
from sklearn.metrics import confusion_matrix
|
| 14 |
+
import importlib
|
| 15 |
+
import torch
|
| 16 |
+
from dash import Dash, html, dcc
|
| 17 |
+
import numpy as np
|
| 18 |
+
from sklearn.metrics import accuracy_score
|
| 19 |
+
from sklearn.metrics import f1_score
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def load_model(model_type: str, model_name_or_path: str, dataset_name: str, config_name: str):
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
| 24 |
+
|
| 25 |
+
if model_type == "text_classification":
|
| 26 |
+
dataset = load_dataset(dataset_name, config_name)
|
| 27 |
+
num_labels = len(dataset["train"].features["label"].names)
|
| 28 |
+
|
| 29 |
+
if "roberta" in model_name_or_path.lower():
|
| 30 |
+
from transformers import RobertaForSequenceClassification
|
| 31 |
+
model = RobertaForSequenceClassification.from_pretrained(
|
| 32 |
+
model_name_or_path, num_labels=num_labels)
|
| 33 |
+
else:
|
| 34 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 35 |
+
model_name_or_path, num_labels=num_labels)
|
| 36 |
+
elif model_type == "token_classification":
|
| 37 |
+
dataset = load_dataset(dataset_name, config_name)
|
| 38 |
+
num_labels = len(
|
| 39 |
+
dataset["train"].features["ner_tags"].feature.names)
|
| 40 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
| 41 |
+
model_name_or_path, num_labels=num_labels)
|
| 42 |
+
elif model_type == "question_answering":
|
| 43 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name_or_path)
|
| 44 |
+
else:
|
| 45 |
+
raise ValueError(f"Invalid model type: {model_type}")
|
| 46 |
|
| 47 |
+
return tokenizer, model
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
|
| 50 |
def test_model(tokenizer, model, test_data: list, label_map: dict):
|
| 51 |
+
results = []
|
| 52 |
+
for text, _, true_label in test_data:
|
| 53 |
+
inputs = tokenizer(text, return_tensors="pt",
|
| 54 |
+
truncation=True, padding=True)
|
| 55 |
+
outputs = model(**inputs)
|
| 56 |
+
pred_label = label_map[int(outputs.logits.argmax(dim=-1))]
|
| 57 |
+
results.append((text, true_label, pred_label))
|
| 58 |
+
return results
|
| 59 |
+
|
| 60 |
|
| 61 |
def generate_label_map(dataset):
|
| 62 |
+
if "label" not in dataset.features or dataset.features["label"] is None:
|
| 63 |
+
return {}
|
| 64 |
+
|
| 65 |
+
if isinstance(dataset.features["label"], datasets.ClassLabel):
|
| 66 |
+
num_labels = dataset.features["label"].num_classes
|
| 67 |
+
label_map = {i: label for i, label in enumerate(dataset.features["label"].names)}
|
| 68 |
+
else:
|
| 69 |
+
num_labels = len(set(dataset["label"]))
|
| 70 |
+
label_map = {i: label for i, label in enumerate(set(dataset["label"]))}
|
| 71 |
return label_map
|
| 72 |
|
| 73 |
+
def calculate_fairness_score(results, label_map):
|
| 74 |
+
true_labels = [r[1] for r in results]
|
| 75 |
+
pred_labels = [r[2] for r in results]
|
| 76 |
|
| 77 |
+
# Overall accuracy
|
| 78 |
+
# accuracy = (true_labels == pred_labels).mean()
|
| 79 |
+
accuracy = accuracy_score(true_labels, pred_labels)
|
| 80 |
+
# Calculate confusion matrix for each group
|
| 81 |
+
group_names = label_map.values()
|
| 82 |
+
group_cms = {}
|
| 83 |
+
for group in group_names:
|
| 84 |
+
true_group_indices = [i for i, label in enumerate(true_labels) if label == group]
|
| 85 |
+
pred_group_labels = [pred_labels[i] for i in true_group_indices]
|
| 86 |
+
true_group_labels = [true_labels[i] for i in true_group_indices]
|
| 87 |
+
|
| 88 |
+
cm = confusion_matrix(true_group_labels, pred_group_labels, labels=list(group_names))
|
| 89 |
+
group_cms[group] = cm
|
| 90 |
+
|
| 91 |
+
# Calculate fairness score
|
| 92 |
+
score = 0
|
| 93 |
+
for i, group1 in enumerate(group_names):
|
| 94 |
+
for j, group2 in enumerate(group_names):
|
| 95 |
+
if i < j:
|
| 96 |
+
cm1 = group_cms[group1]
|
| 97 |
+
cm2 = group_cms[group2]
|
| 98 |
+
diff = np.abs(cm1 - cm2)
|
| 99 |
+
score += (diff.sum() / 2) / cm1.sum()
|
| 100 |
+
|
| 101 |
+
return accuracy, score
|
| 102 |
+
|
| 103 |
+
def calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='accuracy'):
|
| 104 |
+
unique_labels = sorted(label_map.values())
|
| 105 |
+
metrics = []
|
| 106 |
+
|
| 107 |
+
if metric == 'accuracy':
|
| 108 |
+
for label in unique_labels:
|
| 109 |
+
label_indices = [i for i, true_label in enumerate(true_labels) if true_label == label]
|
| 110 |
+
true_label_subset = [true_labels[i] for i in label_indices]
|
| 111 |
+
pred_label_subset = [pred_labels[i] for i in label_indices]
|
| 112 |
+
accuracy = accuracy_score(true_label_subset, pred_label_subset)
|
| 113 |
+
metrics.append(accuracy)
|
| 114 |
+
elif metric == 'f1':
|
| 115 |
+
f1_scores = f1_score(true_labels, pred_labels, labels=unique_labels, average=None)
|
| 116 |
+
metrics = f1_scores.tolist()
|
| 117 |
+
else:
|
| 118 |
+
raise ValueError(f"Invalid metric: {metric}")
|
| 119 |
+
|
| 120 |
+
return metrics
|
| 121 |
+
|
| 122 |
+
def generate_visualization(visualization_type, results, label_map):
|
| 123 |
true_labels = [r[1] for r in results]
|
| 124 |
pred_labels = [r[2] for r in results]
|
| 125 |
|
| 126 |
+
if visualization_type == "confusion_matrix":
|
| 127 |
+
return generate_report_card(results, label_map)["fig"]
|
| 128 |
+
elif visualization_type == "per_class_accuracy":
|
| 129 |
+
per_class_accuracy = calculate_per_class_metrics(
|
| 130 |
+
true_labels, pred_labels, label_map, metric='accuracy')
|
| 131 |
+
|
| 132 |
+
colors = px.colors.qualitative.Plotly
|
| 133 |
+
fig = go.Figure()
|
| 134 |
+
for i, label in enumerate(label_map.values()):
|
| 135 |
+
fig.add_trace(go.Bar(
|
| 136 |
+
x=[label],
|
| 137 |
+
y=[per_class_accuracy[i]],
|
| 138 |
+
name=label,
|
| 139 |
+
marker_color=colors[i % len(colors)]
|
| 140 |
+
))
|
| 141 |
+
|
| 142 |
+
fig.update_layout(title='Per-Class Accuracy',
|
| 143 |
+
xaxis_title='Class', yaxis_title='Accuracy')
|
| 144 |
+
return fig
|
| 145 |
+
elif visualization_type == "per_class_f1":
|
| 146 |
+
per_class_f1 = calculate_per_class_metrics(
|
| 147 |
+
true_labels, pred_labels, label_map, metric='f1')
|
| 148 |
+
|
| 149 |
+
colors = px.colors.qualitative.Plotly
|
| 150 |
+
fig = go.Figure()
|
| 151 |
+
for i, label in enumerate(label_map.values()):
|
| 152 |
+
fig.add_trace(go.Bar(
|
| 153 |
+
x=[label],
|
| 154 |
+
y=[per_class_f1[i]],
|
| 155 |
+
name=label,
|
| 156 |
+
marker_color=colors[i % len(colors)]
|
| 157 |
+
))
|
| 158 |
+
|
| 159 |
+
fig.update_layout(title='Per-Class F1-Score',
|
| 160 |
+
xaxis_title='Class', yaxis_title='F1-Score')
|
| 161 |
+
return fig
|
| 162 |
+
else:
|
| 163 |
+
raise ValueError(f"Invalid visualization type: {visualization_type}")
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
|
|
|
| 166 |
|
| 167 |
+
def generate_report_card(results, label_map):
|
| 168 |
+
true_labels = [r[1] for r in results]
|
| 169 |
+
pred_labels = [r[2] for r in results]
|
| 170 |
+
|
| 171 |
+
cm = confusion_matrix(true_labels, pred_labels,
|
| 172 |
+
labels=list(label_map.values()))
|
| 173 |
+
|
| 174 |
+
# Create the plotly figure
|
| 175 |
+
fig = make_subplots(rows=1, cols=1)
|
| 176 |
+
fig.add_trace(go.Heatmap(
|
| 177 |
+
z=cm,
|
| 178 |
+
x=list(label_map.values()),
|
| 179 |
+
y=list(label_map.values()),
|
| 180 |
+
colorscale='RdYlGn',
|
| 181 |
+
colorbar=dict(title='# of Samples')
|
| 182 |
+
))
|
| 183 |
+
fig.update_layout(
|
| 184 |
+
height=500, width=600,
|
| 185 |
+
title='Confusion Matrix',
|
| 186 |
+
xaxis=dict(title='Predicted Labels'),
|
| 187 |
+
yaxis=dict(title='True Labels', autorange='reversed')
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# Create the text output
|
| 191 |
+
# accuracy = pd.Series(true_labels) == pd.Series(pred_labels)
|
| 192 |
+
accuracy = accuracy_score(true_labels, pred_labels, normalize=False)
|
| 193 |
+
fairness_score = calculate_fairness_score(results, label_map)
|
| 194 |
|
| 195 |
+
per_class_accuracy = calculate_per_class_metrics(
|
| 196 |
+
true_labels, pred_labels, label_map, metric='accuracy')
|
| 197 |
+
per_class_f1 = calculate_per_class_metrics(
|
| 198 |
+
true_labels, pred_labels, label_map, metric='f1')
|
|
|
|
| 199 |
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
text_output = html.Div(children=[
|
| 202 |
+
html.H2('Performance Metrics'),
|
| 203 |
+
html.Div(children=[
|
| 204 |
+
html.Div(children=[
|
| 205 |
+
html.H3('Accuracy'),
|
| 206 |
+
html.H4(f'{accuracy}')
|
| 207 |
+
], className='metric'),
|
| 208 |
+
html.Div(children=[
|
| 209 |
+
html.H3('Fairness Score'),
|
| 210 |
+
# html.H4(f'{fairness_score}')
|
| 211 |
+
html.H4(
|
| 212 |
+
f'Accuracy: {fairness_score[0]:.2f}, Score: {fairness_score[1]:.2f}')
|
| 213 |
+
], className='metric'),
|
| 214 |
+
], className='metric-container'),
|
| 215 |
+
], className='text-output')
|
| 216 |
|
| 217 |
+
# Combine the plot and text output into a Dash container
|
| 218 |
+
# report_card = html.Div([
|
| 219 |
+
# dcc.Graph(figure=fig),
|
| 220 |
+
# text_output,
|
| 221 |
+
# ])
|
| 222 |
|
| 223 |
+
# return report_card
|
| 224 |
+
|
| 225 |
+
report_card = {
|
| 226 |
+
"fig": fig,
|
| 227 |
+
"accuracy": accuracy,
|
| 228 |
+
"fairness_score": fairness_score,
|
| 229 |
+
"per_class_accuracy": per_class_accuracy,
|
| 230 |
+
"per_class_f1": per_class_f1
|
| 231 |
+
}
|
| 232 |
+
return report_card
|
| 233 |
+
|
| 234 |
+
# return fig, text_output
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def app(model_type: str, model_name_or_path: str, dataset_name: str, config_name: str, dataset_split: str, num_samples: int, visualization_type: str):
|
| 238 |
+
tokenizer, model = load_model(
|
| 239 |
+
model_type, model_name_or_path, dataset_name, config_name)
|
| 240 |
+
|
| 241 |
+
# Load the dataset
|
| 242 |
+
# Add this line to cast num_samples to an integer
|
| 243 |
+
num_samples = int(num_samples)
|
| 244 |
+
dataset = load_dataset(
|
| 245 |
+
dataset_name, config_name, split=f"{dataset_split}[:{num_samples}]")
|
| 246 |
+
test_data = []
|
| 247 |
+
|
| 248 |
+
if dataset_name == "glue":
|
| 249 |
+
test_data = [(item["sentence"], None,
|
| 250 |
+
dataset.features["label"].names[item["label"]]) for item in dataset]
|
| 251 |
+
elif dataset_name == "tweet_eval":
|
| 252 |
+
test_data = [(item["text"], None, dataset.features["label"].names[item["label"]])
|
| 253 |
+
for item in dataset]
|
| 254 |
+
else:
|
| 255 |
+
test_data = [(item["sentence"], None,
|
| 256 |
+
dataset.features["label"].names[item["label"]]) for item in dataset]
|
| 257 |
+
|
| 258 |
+
# if model_type == "text_classification":
|
| 259 |
+
# for item in dataset:
|
| 260 |
+
# text = item["sentence"]
|
| 261 |
+
# context = None
|
| 262 |
+
# true_label = item["label"]
|
| 263 |
+
# test_data.append((text, context, true_label))
|
| 264 |
+
# elif model_type == "question_answering":
|
| 265 |
+
# for item in dataset:
|
| 266 |
+
# text = item["question"]
|
| 267 |
+
# context = item["context"]
|
| 268 |
+
# true_label = None
|
| 269 |
+
# test_data.append((text, context, true_label))
|
| 270 |
+
# else:
|
| 271 |
+
# raise ValueError(f"Invalid model type: {model_type}")
|
| 272 |
+
|
| 273 |
+
label_map = generate_label_map(dataset)
|
| 274 |
+
|
| 275 |
+
results = test_model(tokenizer, model, test_data, label_map)
|
| 276 |
+
# fig, text_output = generate_report_card(results, label_map)
|
| 277 |
+
|
| 278 |
+
# return fig, text_output
|
| 279 |
+
|
| 280 |
+
report_card = generate_report_card(results, label_map)
|
| 281 |
+
visualization = generate_visualization(visualization_type, results, label_map)
|
| 282 |
+
|
| 283 |
+
per_class_metrics_str = "\n".join([f"{label}: Acc {acc:.2f}, F1 {f1:.2f}" for label, acc, f1 in zip(
|
| 284 |
+
label_map.values(), report_card['per_class_accuracy'], report_card['per_class_f1'])])
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
# return report_card["fig"], f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}"
|
| 288 |
+
# return f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}", report_card["fig"]
|
| 289 |
+
return (f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}\n\n"
|
| 290 |
+
f"Per-Class Metrics:\n{per_class_metrics_str}"), visualization
|
| 291 |
|
| 292 |
interface = gr.Interface(
|
| 293 |
fn=app,
|
| 294 |
inputs=[
|
| 295 |
+
gr.inputs.Radio(["text_classification", "token_classification",
|
| 296 |
+
"question_answering"], label="Model Type", default="text_classification"),
|
| 297 |
+
gr.inputs.Textbox(lines=1, label="Model Name or Path",
|
| 298 |
+
placeholder="ex: distilbert-base-uncased-finetuned-sst-2-english", default="distilbert-base-uncased-finetuned-sst-2-english"),
|
| 299 |
gr.inputs.Textbox(lines=1, label="Dataset Name",
|
| 300 |
+
placeholder="ex: glue", default="glue"),
|
| 301 |
gr.inputs.Textbox(lines=1, label="Config Name",
|
| 302 |
+
placeholder="ex: sst2", default="cola"),
|
| 303 |
gr.inputs.Dropdown(
|
| 304 |
+
choices=["train", "validation", "test"], label="Dataset Split", default="validation"),
|
| 305 |
gr.inputs.Number(default=100, label="Number of Samples"),
|
| 306 |
+
gr.inputs.Dropdown(
|
| 307 |
+
choices=["confusion_matrix", "per_class_accuracy", "per_class_f1"], label="Visualization Type", default="confusion_matrix"
|
| 308 |
+
),
|
| 309 |
],
|
| 310 |
+
# outputs=gr.Plot(),
|
| 311 |
# outputs=gr.outputs.HTML(),
|
| 312 |
+
# outputs=[gr.outputs.HTML(), gr.Plot()],
|
| 313 |
+
outputs=[
|
| 314 |
+
gr.outputs.Textbox(label="Fairness and Bias Metrics"),
|
| 315 |
+
gr.Plot(label="Graph")
|
| 316 |
+
],
|
| 317 |
title="Fairness and Bias Testing",
|
| 318 |
+
description="Enter a model and dataset to test for fairness and bias.",
|
| 319 |
)
|
| 320 |
|
| 321 |
# Define the label map globally
|