Spaces:
Build error
Build error
Commit
·
a5ba058
1
Parent(s):
6784da7
feat(app): gpt, dashboard, and dark mode
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
import json
|
| 4 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForQuestionAnswering
|
| 5 |
|
| 6 |
from datasets import load_dataset
|
| 7 |
import datasets
|
|
@@ -70,6 +70,7 @@ def generate_label_map(dataset):
|
|
| 70 |
label_map = {i: label for i, label in enumerate(set(dataset["label"]))}
|
| 71 |
return label_map
|
| 72 |
|
|
|
|
| 73 |
def calculate_fairness_score(results, label_map):
|
| 74 |
true_labels = [r[1] for r in results]
|
| 75 |
pred_labels = [r[2] for r in results]
|
|
@@ -88,7 +89,7 @@ def calculate_fairness_score(results, label_map):
|
|
| 88 |
cm = confusion_matrix(true_group_labels, pred_group_labels, labels=list(group_names))
|
| 89 |
group_cms[group] = cm
|
| 90 |
|
| 91 |
-
# Calculate fairness score
|
| 92 |
score = 0
|
| 93 |
for i, group1 in enumerate(group_names):
|
| 94 |
for j, group2 in enumerate(group_names):
|
|
@@ -100,6 +101,7 @@ def calculate_fairness_score(results, label_map):
|
|
| 100 |
|
| 101 |
return accuracy, score
|
| 102 |
|
|
|
|
| 103 |
def calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='accuracy'):
|
| 104 |
unique_labels = sorted(label_map.values())
|
| 105 |
metrics = []
|
|
@@ -119,12 +121,31 @@ def calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='acc
|
|
| 119 |
|
| 120 |
return metrics
|
| 121 |
|
| 122 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
true_labels = [r[1] for r in results]
|
| 124 |
pred_labels = [r[2] for r in results]
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
if visualization_type == "confusion_matrix":
|
| 127 |
-
return generate_report_card(results, label_map)["fig"]
|
| 128 |
elif visualization_type == "per_class_accuracy":
|
| 129 |
per_class_accuracy = calculate_per_class_metrics(
|
| 130 |
true_labels, pred_labels, label_map, metric='accuracy')
|
|
@@ -139,8 +160,17 @@ def generate_visualization(visualization_type, results, label_map):
|
|
| 139 |
marker_color=colors[i % len(colors)]
|
| 140 |
))
|
| 141 |
|
| 142 |
-
fig.
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
return fig
|
| 145 |
elif visualization_type == "per_class_f1":
|
| 146 |
per_class_f1 = calculate_per_class_metrics(
|
|
@@ -156,35 +186,107 @@ def generate_visualization(visualization_type, results, label_map):
|
|
| 156 |
marker_color=colors[i % len(colors)]
|
| 157 |
))
|
| 158 |
|
| 159 |
-
fig.
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
return fig
|
|
|
|
|
|
|
| 162 |
else:
|
| 163 |
raise ValueError(f"Invalid visualization type: {visualization_type}")
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
true_labels = [r[1] for r in results]
|
| 169 |
pred_labels = [r[2] for r in results]
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
fig.update_layout(
|
|
|
|
|
|
|
|
|
|
| 184 |
height=500, width=600,
|
| 185 |
title='Confusion Matrix',
|
| 186 |
xaxis=dict(title='Predicted Labels'),
|
| 187 |
-
yaxis=dict(title='True Labels'
|
| 188 |
)
|
| 189 |
|
| 190 |
# Create the text output
|
|
@@ -197,31 +299,6 @@ def generate_report_card(results, label_map):
|
|
| 197 |
per_class_f1 = calculate_per_class_metrics(
|
| 198 |
true_labels, pred_labels, label_map, metric='f1')
|
| 199 |
|
| 200 |
-
|
| 201 |
-
text_output = html.Div(children=[
|
| 202 |
-
html.H2('Performance Metrics'),
|
| 203 |
-
html.Div(children=[
|
| 204 |
-
html.Div(children=[
|
| 205 |
-
html.H3('Accuracy'),
|
| 206 |
-
html.H4(f'{accuracy}')
|
| 207 |
-
], className='metric'),
|
| 208 |
-
html.Div(children=[
|
| 209 |
-
html.H3('Fairness Score'),
|
| 210 |
-
# html.H4(f'{fairness_score}')
|
| 211 |
-
html.H4(
|
| 212 |
-
f'Accuracy: {fairness_score[0]:.2f}, Score: {fairness_score[1]:.2f}')
|
| 213 |
-
], className='metric'),
|
| 214 |
-
], className='metric-container'),
|
| 215 |
-
], className='text-output')
|
| 216 |
-
|
| 217 |
-
# Combine the plot and text output into a Dash container
|
| 218 |
-
# report_card = html.Div([
|
| 219 |
-
# dcc.Graph(figure=fig),
|
| 220 |
-
# text_output,
|
| 221 |
-
# ])
|
| 222 |
-
|
| 223 |
-
# return report_card
|
| 224 |
-
|
| 225 |
report_card = {
|
| 226 |
"fig": fig,
|
| 227 |
"accuracy": accuracy,
|
|
@@ -232,9 +309,26 @@ def generate_report_card(results, label_map):
|
|
| 232 |
return report_card
|
| 233 |
|
| 234 |
# return fig, text_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
|
| 237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
tokenizer, model = load_model(
|
| 239 |
model_type, model_name_or_path, dataset_name, config_name)
|
| 240 |
|
|
@@ -277,17 +371,33 @@ def app(model_type: str, model_name_or_path: str, dataset_name: str, config_name
|
|
| 277 |
|
| 278 |
# return fig, text_output
|
| 279 |
|
| 280 |
-
report_card = generate_report_card(results, label_map)
|
| 281 |
-
visualization = generate_visualization(visualization_type, results, label_map)
|
| 282 |
|
| 283 |
per_class_metrics_str = "\n".join([f"{label}: Acc {acc:.2f}, F1 {f1:.2f}" for label, acc, f1 in zip(
|
| 284 |
label_map.values(), report_card['per_class_accuracy'], report_card['per_class_f1'])])
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
# return report_card["fig"], f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}"
|
| 288 |
# return f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}", report_card["fig"]
|
| 289 |
-
return (f"
|
| 290 |
-
|
|
|
|
| 291 |
|
| 292 |
interface = gr.Interface(
|
| 293 |
fn=app,
|
|
@@ -304,8 +414,9 @@ interface = gr.Interface(
|
|
| 304 |
choices=["train", "validation", "test"], label="Dataset Split", default="validation"),
|
| 305 |
gr.inputs.Number(default=100, label="Number of Samples"),
|
| 306 |
gr.inputs.Dropdown(
|
| 307 |
-
choices=["confusion_matrix", "per_class_accuracy", "per_class_f1"], label="Visualization Type", default="
|
| 308 |
),
|
|
|
|
| 309 |
],
|
| 310 |
# outputs=gr.Plot(),
|
| 311 |
# outputs=gr.outputs.HTML(),
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
import json
|
| 4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForQuestionAnswering
|
| 5 |
|
| 6 |
from datasets import load_dataset
|
| 7 |
import datasets
|
|
|
|
| 70 |
label_map = {i: label for i, label in enumerate(set(dataset["label"]))}
|
| 71 |
return label_map
|
| 72 |
|
| 73 |
+
# Explain fairness score: https://arxiv.org/pdf/1908.09635.pdf
|
| 74 |
def calculate_fairness_score(results, label_map):
|
| 75 |
true_labels = [r[1] for r in results]
|
| 76 |
pred_labels = [r[2] for r in results]
|
|
|
|
| 89 |
cm = confusion_matrix(true_group_labels, pred_group_labels, labels=list(group_names))
|
| 90 |
group_cms[group] = cm
|
| 91 |
|
| 92 |
+
# Calculate fairness score which means the average difference between confusion matrices
|
| 93 |
score = 0
|
| 94 |
for i, group1 in enumerate(group_names):
|
| 95 |
for j, group2 in enumerate(group_names):
|
|
|
|
| 101 |
|
| 102 |
return accuracy, score
|
| 103 |
|
| 104 |
+
# Per-class metrics means the metrics for each class, and the class is defined by the label_map
|
| 105 |
def calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='accuracy'):
|
| 106 |
unique_labels = sorted(label_map.values())
|
| 107 |
metrics = []
|
|
|
|
| 121 |
|
| 122 |
return metrics
|
| 123 |
|
| 124 |
+
def generate_fairness_statement(accuracy, fairness_score):
|
| 125 |
+
accuracy_level = "high" if accuracy >= 0.85 else "moderate" if accuracy >= 0.7 else "low"
|
| 126 |
+
fairness_level = "low" if fairness_score <= 0.15 else "moderate" if fairness_score <= 0.3 else "high"
|
| 127 |
+
|
| 128 |
+
# statement = f"The model has a {accuracy_level} overall accuracy of {accuracy * 100:.2f}% and a {fairness_level} fairness score of {fairness_score:.2f}. "
|
| 129 |
+
statement = f"Assessment: "
|
| 130 |
+
|
| 131 |
+
if fairness_level == "low":
|
| 132 |
+
statement += f"The low fairness score ({fairness_score:.2f}) and accuracy ({accuracy * 100:.2f}%) indicate that the model is relatively fair and does not exhibit significant bias across different groups."
|
| 133 |
+
elif fairness_level == "moderate":
|
| 134 |
+
statement += f"The moderate fairness score ({fairness_score:.2f}) and accuracy ({accuracy * 100:.2f}%) suggest that the model may have some bias across different groups, and further investigation is needed to ensure it does not disproportionately affect certain groups."
|
| 135 |
+
else:
|
| 136 |
+
statement += f"The high fairness score ({fairness_score:.2f}) and accuracy ({accuracy * 100:.2f}%) indicate that the model exhibits significant bias across different groups, and it's recommended to address this issue to ensure fair predictions for all groups."
|
| 137 |
+
|
| 138 |
+
return statement
|
| 139 |
+
|
| 140 |
+
def generate_visualization(visualization_type, results, label_map, chart_mode):
|
| 141 |
true_labels = [r[1] for r in results]
|
| 142 |
pred_labels = [r[2] for r in results]
|
| 143 |
+
|
| 144 |
+
background_color = "white" if chart_mode == "Light" else "black"
|
| 145 |
+
text_color = "black" if chart_mode == "Light" else "white"
|
| 146 |
|
| 147 |
if visualization_type == "confusion_matrix":
|
| 148 |
+
return generate_report_card(results, label_map, chart_mode)["fig"]
|
| 149 |
elif visualization_type == "per_class_accuracy":
|
| 150 |
per_class_accuracy = calculate_per_class_metrics(
|
| 151 |
true_labels, pred_labels, label_map, metric='accuracy')
|
|
|
|
| 160 |
marker_color=colors[i % len(colors)]
|
| 161 |
))
|
| 162 |
|
| 163 |
+
fig.update_xaxes(showgrid=True, gridwidth=1,
|
| 164 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
| 165 |
+
fig.update_yaxes(showgrid=True, gridwidth=1,
|
| 166 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
| 167 |
+
fig.update_layout(plot_bgcolor=background_color,
|
| 168 |
+
paper_bgcolor=background_color,
|
| 169 |
+
font=dict(color=text_color),
|
| 170 |
+
title='Per-Class Accuracy',
|
| 171 |
+
xaxis_title='Class', yaxis_title='Accuracy'
|
| 172 |
+
|
| 173 |
+
)
|
| 174 |
return fig
|
| 175 |
elif visualization_type == "per_class_f1":
|
| 176 |
per_class_f1 = calculate_per_class_metrics(
|
|
|
|
| 186 |
marker_color=colors[i % len(colors)]
|
| 187 |
))
|
| 188 |
|
| 189 |
+
fig.update_xaxes(showgrid=True, gridwidth=1,
|
| 190 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
| 191 |
+
fig.update_yaxes(showgrid=True, gridwidth=1,
|
| 192 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
| 193 |
+
fig.update_layout(plot_bgcolor=background_color,
|
| 194 |
+
paper_bgcolor=background_color,
|
| 195 |
+
font=dict(color=text_color),
|
| 196 |
+
title='Per-Class F1-Score',
|
| 197 |
+
xaxis_title='Class', yaxis_title='F1-Score'
|
| 198 |
+
)
|
| 199 |
return fig
|
| 200 |
+
elif visualization_type == "interactive_dashboard":
|
| 201 |
+
return generate_interactive_dashboard(results, label_map, chart_mode)
|
| 202 |
else:
|
| 203 |
raise ValueError(f"Invalid visualization type: {visualization_type}")
|
| 204 |
|
| 205 |
+
def generate_interactive_dashboard(results, label_map, chart_mode):
|
| 206 |
+
true_labels = [r[1] for r in results]
|
| 207 |
+
pred_labels = [r[2] for r in results]
|
| 208 |
+
|
| 209 |
+
colors = ['#EF553B', '#00CC96', '#636EFA', '#AB63FA', '#FFA15A',
|
| 210 |
+
'#19D3F3', '#FF6692', '#B6E880', '#FF97FF', '#FECB52']
|
| 211 |
+
|
| 212 |
+
background_color = "white" if chart_mode == "Light" else "black"
|
| 213 |
+
text_color = "black" if chart_mode == "Light" else "white"
|
| 214 |
+
|
| 215 |
+
# Create confusion matrix
|
| 216 |
+
cm_fig = generate_report_card(results, label_map, chart_mode)["fig"]
|
| 217 |
+
|
| 218 |
+
# Create per-class accuracy bar chart
|
| 219 |
+
pca_data = calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='accuracy')
|
| 220 |
+
pca_fig = go.Bar(x=list(label_map.values()), y=pca_data, marker=dict(color=colors))
|
| 221 |
+
|
| 222 |
+
# Create per-class F1-score bar chart
|
| 223 |
+
pcf_data = calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='f1')
|
| 224 |
+
pcf_fig = go.Bar(x=list(label_map.values()), y=pcf_data, marker=dict(color=colors))
|
| 225 |
+
|
| 226 |
+
# Combine all charts into a mixed subplot
|
| 227 |
+
fig = make_subplots(rows=2, cols=2, shared_xaxes=True, specs=[[{"colspan": 2}, None],
|
| 228 |
+
[{}, {}]],
|
| 229 |
+
print_grid=True,subplot_titles=(
|
| 230 |
+
"Confusion Matrix", "Per-Class Accuracy", "Per-Class F1-Score"))
|
| 231 |
+
fig.add_trace(cm_fig['data'][0], row=1, col=1)
|
| 232 |
+
fig.add_trace(pca_fig, row=2, col=1)
|
| 233 |
+
fig.add_trace(pcf_fig, row=2, col=2)
|
| 234 |
+
|
| 235 |
+
fig.update_xaxes(showgrid=True, gridwidth=1,
|
| 236 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
| 237 |
+
fig.update_yaxes(showgrid=True, gridwidth=1,
|
| 238 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
| 239 |
+
# Update layout
|
| 240 |
+
fig.update_layout(height=700, width=650,
|
| 241 |
+
plot_bgcolor=background_color,
|
| 242 |
+
paper_bgcolor=background_color,
|
| 243 |
+
font=dict(color=text_color),
|
| 244 |
+
title="Fairness Report", showlegend=False
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
return fig
|
| 248 |
+
|
| 249 |
+
def generate_report_card(results, label_map, chart_mode):
|
| 250 |
true_labels = [r[1] for r in results]
|
| 251 |
pred_labels = [r[2] for r in results]
|
| 252 |
+
|
| 253 |
+
background_color = "white" if chart_mode == "Light" else "black"
|
| 254 |
+
text_color = "black" if chart_mode == "Light" else "white"
|
| 255 |
+
|
| 256 |
+
cm = confusion_matrix(true_labels, pred_labels)
|
| 257 |
+
|
| 258 |
+
# Normalize the confusion matrix
|
| 259 |
+
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
|
| 260 |
+
|
| 261 |
+
# Create a custom color scale
|
| 262 |
+
custom_color_scale = np.zeros(cm_normalized.shape, dtype='str')
|
| 263 |
+
for i in range(cm_normalized.shape[0]):
|
| 264 |
+
for j in range(cm_normalized.shape[1]):
|
| 265 |
+
custom_color_scale[i, j] = '#EF553B' if i == j else '#00CC96'
|
| 266 |
+
|
| 267 |
+
fig = go.Figure(go.Heatmap(z=cm_normalized,
|
| 268 |
+
x=list(label_map.values()),
|
| 269 |
+
y=list(label_map.values()),
|
| 270 |
+
text=cm,
|
| 271 |
+
hovertemplate='%{text}',
|
| 272 |
+
colorscale=[[0, '#EF553B'], [
|
| 273 |
+
1, '#00CC96']],
|
| 274 |
+
showscale=False,
|
| 275 |
+
zmin=0, zmax=1,
|
| 276 |
+
customdata=custom_color_scale))
|
| 277 |
+
|
| 278 |
+
fig.update_xaxes(showgrid=True, gridwidth=1,
|
| 279 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
| 280 |
+
fig.update_yaxes(showgrid=True, gridwidth=1,
|
| 281 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
| 282 |
fig.update_layout(
|
| 283 |
+
plot_bgcolor=background_color,
|
| 284 |
+
paper_bgcolor=background_color,
|
| 285 |
+
font=dict(color=text_color),
|
| 286 |
height=500, width=600,
|
| 287 |
title='Confusion Matrix',
|
| 288 |
xaxis=dict(title='Predicted Labels'),
|
| 289 |
+
yaxis=dict(title='True Labels')
|
| 290 |
)
|
| 291 |
|
| 292 |
# Create the text output
|
|
|
|
| 299 |
per_class_f1 = calculate_per_class_metrics(
|
| 300 |
true_labels, pred_labels, label_map, metric='f1')
|
| 301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
report_card = {
|
| 303 |
"fig": fig,
|
| 304 |
"accuracy": accuracy,
|
|
|
|
| 309 |
return report_card
|
| 310 |
|
| 311 |
# return fig, text_output
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
def generate_insights(custom_text, model_name, dataset_name, accuracy, fairness_score, report_card, generator):
|
| 315 |
+
per_class_metrics = {
|
| 316 |
+
'accuracy': report_card.get('per_class_accuracy', []),
|
| 317 |
+
'f1': report_card.get('per_class_f1', [])
|
| 318 |
+
}
|
| 319 |
+
|
| 320 |
+
if not per_class_metrics['accuracy'] or not per_class_metrics['f1']:
|
| 321 |
+
input_text = f"{custom_text} The model {model_name} has been evaluated on the {dataset_name} dataset. It has an overall accuracy of {accuracy * 100:.2f}%. The fairness score is {fairness_score:.2f}. Per-class metrics could not be calculated. Please provide some interesting insights about the fairness and bias of the model."
|
| 322 |
+
else:
|
| 323 |
+
input_text = f"{custom_text} The model {model_name} has been evaluated on the {dataset_name} dataset. It has an overall accuracy of {accuracy * 100:.2f}%. The fairness score is {fairness_score:.2f}. The per-class metrics are: {per_class_metrics}. Please provide some interesting insights about the fairness, bias, and per-class performance."
|
| 324 |
|
| 325 |
|
| 326 |
+
insights = generator(input_text, max_length=600,
|
| 327 |
+
do_sample=True, temperature=0.7)
|
| 328 |
+
return insights[0]['generated_text']
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def app(model_type: str, model_name_or_path: str, dataset_name: str, config_name: str, dataset_split: str, num_samples: int, visualization_type: str, chart_mode: str):
|
| 332 |
tokenizer, model = load_model(
|
| 333 |
model_type, model_name_or_path, dataset_name, config_name)
|
| 334 |
|
|
|
|
| 371 |
|
| 372 |
# return fig, text_output
|
| 373 |
|
| 374 |
+
report_card = generate_report_card(results, label_map, chart_mode)
|
| 375 |
+
visualization = generate_visualization(visualization_type, results, label_map, chart_mode)
|
| 376 |
|
| 377 |
per_class_metrics_str = "\n".join([f"{label}: Acc {acc:.2f}, F1 {f1:.2f}" for label, acc, f1 in zip(
|
| 378 |
label_map.values(), report_card['per_class_accuracy'], report_card['per_class_f1'])])
|
| 379 |
+
|
| 380 |
+
accuracy, fairness_score = calculate_fairness_score(results, label_map)
|
| 381 |
+
fairness_statement = generate_fairness_statement(accuracy, fairness_score)
|
| 382 |
+
|
| 383 |
+
# Use a GPU if available, otherwise use -1 for CPU.
|
| 384 |
+
generator = pipeline(
|
| 385 |
+
'text-generation', model='gpt2', device=-1) # Use EleutherAI/gpt-neo-1.3B or EleutherAI/GPT-J-6B for GPT3 for distilgpt2 for GPT2
|
| 386 |
+
per_class_metrics = {
|
| 387 |
+
'accuracy': report_card['per_class_accuracy'],
|
| 388 |
+
'f1': report_card['per_class_f1']
|
| 389 |
+
}
|
| 390 |
+
|
| 391 |
+
custom_text = fairness_statement
|
| 392 |
+
|
| 393 |
+
insights = generate_insights(custom_text, model_name_or_path,
|
| 394 |
+
dataset_name, accuracy, fairness_score, report_card, generator)
|
| 395 |
|
| 396 |
# return report_card["fig"], f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}"
|
| 397 |
# return f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}", report_card["fig"]
|
| 398 |
+
return (f"{insights}\n\n"
|
| 399 |
+
f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]: .2f}\n\n"
|
| 400 |
+
f"Per-Class Metrics:\n{per_class_metrics_str}"), visualization
|
| 401 |
|
| 402 |
interface = gr.Interface(
|
| 403 |
fn=app,
|
|
|
|
| 414 |
choices=["train", "validation", "test"], label="Dataset Split", default="validation"),
|
| 415 |
gr.inputs.Number(default=100, label="Number of Samples"),
|
| 416 |
gr.inputs.Dropdown(
|
| 417 |
+
choices=["interactive_dashboard", "confusion_matrix", "per_class_accuracy", "per_class_f1"], label="Visualization Type", default="interactive_dashboard"
|
| 418 |
),
|
| 419 |
+
gr.inputs.Radio(["Light", "Dark"], label="Chart Mode", default="Light"),
|
| 420 |
],
|
| 421 |
# outputs=gr.Plot(),
|
| 422 |
# outputs=gr.outputs.HTML(),
|