Spaces:
Running
Running
fix: update model encoding flow
Browse files- lightweight_embeddings/router.py +10 -47
- lightweight_embeddings/service.py +62 -14
lightweight_embeddings/router.py
CHANGED
|
@@ -21,8 +21,7 @@ from __future__ import annotations
|
|
| 21 |
|
| 22 |
import logging
|
| 23 |
import os
|
| 24 |
-
from typing import Dict,
|
| 25 |
-
from enum import Enum
|
| 26 |
from datetime import datetime
|
| 27 |
|
| 28 |
from fastapi import APIRouter, BackgroundTasks, HTTPException
|
|
@@ -32,8 +31,9 @@ from .analytics import Analytics
|
|
| 32 |
from .service import (
|
| 33 |
ModelConfig,
|
| 34 |
TextModelType,
|
| 35 |
-
ImageModelType,
|
| 36 |
EmbeddingsService,
|
|
|
|
|
|
|
| 37 |
)
|
| 38 |
|
| 39 |
logger = logging.getLogger(__name__)
|
|
@@ -44,28 +44,6 @@ router = APIRouter(
|
|
| 44 |
)
|
| 45 |
|
| 46 |
|
| 47 |
-
class ModelKind(str, Enum):
|
| 48 |
-
TEXT = "text"
|
| 49 |
-
IMAGE = "image"
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def detect_model_kind(model_id: str) -> ModelKind:
|
| 53 |
-
"""
|
| 54 |
-
Detect whether model_id is for a text or an image model.
|
| 55 |
-
Raises ValueError if unrecognized.
|
| 56 |
-
"""
|
| 57 |
-
if model_id in [m.value for m in TextModelType]:
|
| 58 |
-
return ModelKind.TEXT
|
| 59 |
-
elif model_id in [m.value for m in ImageModelType]:
|
| 60 |
-
return ModelKind.IMAGE
|
| 61 |
-
else:
|
| 62 |
-
raise ValueError(
|
| 63 |
-
f"Unrecognized model ID: {model_id}.\n"
|
| 64 |
-
f"Valid text: {[m.value for m in TextModelType]}\n"
|
| 65 |
-
f"Valid image: {[m.value for m in ImageModelType]}"
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
class EmbeddingRequest(BaseModel):
|
| 70 |
"""
|
| 71 |
Input to /v1/embeddings
|
|
@@ -147,7 +125,7 @@ embeddings_service = EmbeddingsService(config=service_config)
|
|
| 147 |
analytics = Analytics(
|
| 148 |
url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"),
|
| 149 |
token=os.environ.get("REDIS_TOKEN", "***"),
|
| 150 |
-
sync_interval=5 * 60,
|
| 151 |
)
|
| 152 |
|
| 153 |
|
|
@@ -159,23 +137,15 @@ async def create_embeddings(
|
|
| 159 |
Generates embeddings for the given input (text or image).
|
| 160 |
"""
|
| 161 |
try:
|
| 162 |
-
|
| 163 |
-
mkind = detect_model_kind(request.model)
|
| 164 |
-
|
| 165 |
-
# 2) Update global service config so it uses the correct model
|
| 166 |
-
if mkind == ModelKind.TEXT:
|
| 167 |
-
service_config.text_model_type = TextModelType(request.model)
|
| 168 |
-
else:
|
| 169 |
-
service_config.image_model_type = ImageModelType(request.model)
|
| 170 |
-
|
| 171 |
-
# 3) Generate
|
| 172 |
embeddings = await embeddings_service.generate_embeddings(
|
| 173 |
-
|
|
|
|
| 174 |
)
|
| 175 |
|
| 176 |
-
#
|
| 177 |
total_tokens = 0
|
| 178 |
-
if
|
| 179 |
total_tokens = embeddings_service.estimate_tokens(request.input)
|
| 180 |
|
| 181 |
resp = {
|
|
@@ -218,17 +188,10 @@ async def rank_candidates(request: RankRequest, background_tasks: BackgroundTask
|
|
| 218 |
Ranks candidate texts against the given queries (which can be text or image).
|
| 219 |
"""
|
| 220 |
try:
|
| 221 |
-
mkind = detect_model_kind(request.model)
|
| 222 |
-
|
| 223 |
-
if mkind == ModelKind.TEXT:
|
| 224 |
-
service_config.text_model_type = TextModelType(request.model)
|
| 225 |
-
else:
|
| 226 |
-
service_config.image_model_type = ImageModelType(request.model)
|
| 227 |
-
|
| 228 |
results = await embeddings_service.rank(
|
|
|
|
| 229 |
queries=request.queries,
|
| 230 |
candidates=request.candidates,
|
| 231 |
-
modality=mkind.value,
|
| 232 |
)
|
| 233 |
|
| 234 |
background_tasks.add_task(
|
|
|
|
| 21 |
|
| 22 |
import logging
|
| 23 |
import os
|
| 24 |
+
from typing import Dict, List, Union
|
|
|
|
| 25 |
from datetime import datetime
|
| 26 |
|
| 27 |
from fastapi import APIRouter, BackgroundTasks, HTTPException
|
|
|
|
| 31 |
from .service import (
|
| 32 |
ModelConfig,
|
| 33 |
TextModelType,
|
|
|
|
| 34 |
EmbeddingsService,
|
| 35 |
+
ModelKind,
|
| 36 |
+
detect_model_kind,
|
| 37 |
)
|
| 38 |
|
| 39 |
logger = logging.getLogger(__name__)
|
|
|
|
| 44 |
)
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
class EmbeddingRequest(BaseModel):
|
| 48 |
"""
|
| 49 |
Input to /v1/embeddings
|
|
|
|
| 125 |
analytics = Analytics(
|
| 126 |
url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"),
|
| 127 |
token=os.environ.get("REDIS_TOKEN", "***"),
|
| 128 |
+
sync_interval=5 * 60, # 5 minutes
|
| 129 |
)
|
| 130 |
|
| 131 |
|
|
|
|
| 137 |
Generates embeddings for the given input (text or image).
|
| 138 |
"""
|
| 139 |
try:
|
| 140 |
+
modality = detect_model_kind(request.model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
embeddings = await embeddings_service.generate_embeddings(
|
| 142 |
+
inputs=request.input,
|
| 143 |
+
model=request.model,
|
| 144 |
)
|
| 145 |
|
| 146 |
+
# Estimate tokens for text only
|
| 147 |
total_tokens = 0
|
| 148 |
+
if modality == ModelKind.TEXT:
|
| 149 |
total_tokens = embeddings_service.estimate_tokens(request.input)
|
| 150 |
|
| 151 |
resp = {
|
|
|
|
| 188 |
Ranks candidate texts against the given queries (which can be text or image).
|
| 189 |
"""
|
| 190 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
results = await embeddings_service.rank(
|
| 192 |
+
model=request.model,
|
| 193 |
queries=request.queries,
|
| 194 |
candidates=request.candidates,
|
|
|
|
| 195 |
)
|
| 196 |
|
| 197 |
background_tasks.add_task(
|
lightweight_embeddings/service.py
CHANGED
|
@@ -28,7 +28,7 @@ from __future__ import annotations
|
|
| 28 |
|
| 29 |
import logging
|
| 30 |
from enum import Enum
|
| 31 |
-
from typing import List, Union,
|
| 32 |
from dataclasses import dataclass
|
| 33 |
from pathlib import Path
|
| 34 |
from io import BytesIO
|
|
@@ -149,6 +149,28 @@ class ModelConfig:
|
|
| 149 |
return image_configs[self.image_model_type]
|
| 150 |
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
class EmbeddingsService:
|
| 153 |
"""
|
| 154 |
Service for generating text/image embeddings and performing ranking.
|
|
@@ -264,7 +286,11 @@ class EmbeddingsService:
|
|
| 264 |
except Exception as e:
|
| 265 |
raise ValueError(f"Error processing image '{path_or_url}': {str(e)}") from e
|
| 266 |
|
| 267 |
-
def _generate_text_embeddings(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
"""
|
| 269 |
Generate text embeddings using the currently configured text model
|
| 270 |
with an LRU cache for single-text requests.
|
|
@@ -274,7 +300,7 @@ class EmbeddingsService:
|
|
| 274 |
key = md5(texts[0].encode("utf-8")).hexdigest()
|
| 275 |
if key in self.lru_cache:
|
| 276 |
return self.lru_cache[key]
|
| 277 |
-
model = self.text_models[
|
| 278 |
embeddings = model.encode(texts)
|
| 279 |
|
| 280 |
if len(texts) == 1:
|
|
@@ -287,6 +313,7 @@ class EmbeddingsService:
|
|
| 287 |
|
| 288 |
def _generate_image_embeddings(
|
| 289 |
self,
|
|
|
|
| 290 |
images: Union[str, List[str]],
|
| 291 |
batch_size: Optional[int] = None,
|
| 292 |
) -> np.ndarray:
|
|
@@ -295,7 +322,7 @@ class EmbeddingsService:
|
|
| 295 |
If `batch_size` is None, all images are processed at once.
|
| 296 |
"""
|
| 297 |
try:
|
| 298 |
-
model = self.image_models[
|
| 299 |
|
| 300 |
# Single image
|
| 301 |
if isinstance(images, str):
|
|
@@ -341,36 +368,57 @@ class EmbeddingsService:
|
|
| 341 |
|
| 342 |
async def generate_embeddings(
|
| 343 |
self,
|
| 344 |
-
|
| 345 |
-
|
| 346 |
batch_size: Optional[int] = None,
|
| 347 |
) -> np.ndarray:
|
| 348 |
"""
|
| 349 |
Asynchronously generate embeddings for text or image.
|
| 350 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
self._validate_modality(modality)
|
| 352 |
-
if modality == "text":
|
| 353 |
-
text_list = self._validate_text_input(
|
| 354 |
-
return self._generate_text_embeddings(text_list)
|
| 355 |
-
|
| 356 |
-
return self._generate_image_embeddings(
|
|
|
|
|
|
|
| 357 |
|
| 358 |
async def rank(
|
| 359 |
self,
|
|
|
|
| 360 |
queries: Union[str, List[str]],
|
| 361 |
candidates: List[str],
|
| 362 |
-
modality: Literal["text", "image"],
|
| 363 |
batch_size: Optional[int] = None,
|
| 364 |
) -> Dict[str, Any]:
|
| 365 |
"""
|
| 366 |
Rank candidates (always text) against the queries, which may be text or image.
|
| 367 |
Returns dict of { probabilities, cosine_similarities, usage }.
|
| 368 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
|
| 370 |
# 1) Generate embeddings for queries
|
| 371 |
-
query_embeds = await self.generate_embeddings(
|
|
|
|
|
|
|
| 372 |
# 2) Generate embeddings for text candidates
|
| 373 |
-
candidate_embeds = await self.generate_embeddings(
|
|
|
|
|
|
|
| 374 |
|
| 375 |
# 3) Compute cosine similarity
|
| 376 |
sim_matrix = self.cosine_similarity(query_embeds, candidate_embeds)
|
|
|
|
| 28 |
|
| 29 |
import logging
|
| 30 |
from enum import Enum
|
| 31 |
+
from typing import List, Union, Dict, Optional, NamedTuple, Any
|
| 32 |
from dataclasses import dataclass
|
| 33 |
from pathlib import Path
|
| 34 |
from io import BytesIO
|
|
|
|
| 149 |
return image_configs[self.image_model_type]
|
| 150 |
|
| 151 |
|
| 152 |
+
class ModelKind(str, Enum):
|
| 153 |
+
TEXT = "text"
|
| 154 |
+
IMAGE = "image"
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def detect_model_kind(model_id: str) -> ModelKind:
|
| 158 |
+
"""
|
| 159 |
+
Detect whether model_id is for a text or an image model.
|
| 160 |
+
Raises ValueError if unrecognized.
|
| 161 |
+
"""
|
| 162 |
+
if model_id in [m.value for m in TextModelType]:
|
| 163 |
+
return ModelKind.TEXT
|
| 164 |
+
elif model_id in [m.value for m in ImageModelType]:
|
| 165 |
+
return ModelKind.IMAGE
|
| 166 |
+
else:
|
| 167 |
+
raise ValueError(
|
| 168 |
+
f"Unrecognized model ID: {model_id}.\n"
|
| 169 |
+
f"Valid text: {[m.value for m in TextModelType]}\n"
|
| 170 |
+
f"Valid image: {[m.value for m in ImageModelType]}"
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
class EmbeddingsService:
|
| 175 |
"""
|
| 176 |
Service for generating text/image embeddings and performing ranking.
|
|
|
|
| 286 |
except Exception as e:
|
| 287 |
raise ValueError(f"Error processing image '{path_or_url}': {str(e)}") from e
|
| 288 |
|
| 289 |
+
def _generate_text_embeddings(
|
| 290 |
+
self,
|
| 291 |
+
model_id: TextModelType,
|
| 292 |
+
texts: List[str],
|
| 293 |
+
) -> np.ndarray:
|
| 294 |
"""
|
| 295 |
Generate text embeddings using the currently configured text model
|
| 296 |
with an LRU cache for single-text requests.
|
|
|
|
| 300 |
key = md5(texts[0].encode("utf-8")).hexdigest()
|
| 301 |
if key in self.lru_cache:
|
| 302 |
return self.lru_cache[key]
|
| 303 |
+
model = self.text_models[model_id]
|
| 304 |
embeddings = model.encode(texts)
|
| 305 |
|
| 306 |
if len(texts) == 1:
|
|
|
|
| 313 |
|
| 314 |
def _generate_image_embeddings(
|
| 315 |
self,
|
| 316 |
+
model_id: ImageModelType,
|
| 317 |
images: Union[str, List[str]],
|
| 318 |
batch_size: Optional[int] = None,
|
| 319 |
) -> np.ndarray:
|
|
|
|
| 322 |
If `batch_size` is None, all images are processed at once.
|
| 323 |
"""
|
| 324 |
try:
|
| 325 |
+
model = self.image_models[model_id]
|
| 326 |
|
| 327 |
# Single image
|
| 328 |
if isinstance(images, str):
|
|
|
|
| 368 |
|
| 369 |
async def generate_embeddings(
|
| 370 |
self,
|
| 371 |
+
model: str,
|
| 372 |
+
inputs: Union[str, List[str]],
|
| 373 |
batch_size: Optional[int] = None,
|
| 374 |
) -> np.ndarray:
|
| 375 |
"""
|
| 376 |
Asynchronously generate embeddings for text or image.
|
| 377 |
"""
|
| 378 |
+
# Determine if it's text or image
|
| 379 |
+
modality = detect_model_kind(model)
|
| 380 |
+
model_id = (
|
| 381 |
+
TextModelType(model)
|
| 382 |
+
if modality == ModelKind.TEXT
|
| 383 |
+
else ImageModelType(model)
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
self._validate_modality(modality)
|
| 387 |
+
if modality == "text" and isinstance(model_id, TextModelType):
|
| 388 |
+
text_list = self._validate_text_input(inputs)
|
| 389 |
+
return self._generate_text_embeddings(model_id=model_id, texts=text_list)
|
| 390 |
+
elif modality == "image" and isinstance(model_id, ImageModelType):
|
| 391 |
+
return self._generate_image_embeddings(
|
| 392 |
+
model_id=model_id, images=inputs, batch_size=batch_size
|
| 393 |
+
)
|
| 394 |
|
| 395 |
async def rank(
|
| 396 |
self,
|
| 397 |
+
model: str,
|
| 398 |
queries: Union[str, List[str]],
|
| 399 |
candidates: List[str],
|
|
|
|
| 400 |
batch_size: Optional[int] = None,
|
| 401 |
) -> Dict[str, Any]:
|
| 402 |
"""
|
| 403 |
Rank candidates (always text) against the queries, which may be text or image.
|
| 404 |
Returns dict of { probabilities, cosine_similarities, usage }.
|
| 405 |
"""
|
| 406 |
+
# Determine if it's text or image
|
| 407 |
+
modality = detect_model_kind(model)
|
| 408 |
+
model_id = (
|
| 409 |
+
TextModelType(model)
|
| 410 |
+
if modality == ModelKind.TEXT
|
| 411 |
+
else ImageModelType(model)
|
| 412 |
+
)
|
| 413 |
|
| 414 |
# 1) Generate embeddings for queries
|
| 415 |
+
query_embeds = await self.generate_embeddings(
|
| 416 |
+
model=model_id, inputs=queries, batch_size=batch_size
|
| 417 |
+
)
|
| 418 |
# 2) Generate embeddings for text candidates
|
| 419 |
+
candidate_embeds = await self.generate_embeddings(
|
| 420 |
+
model=model_id, inputs=candidates, batch_size=batch_size
|
| 421 |
+
)
|
| 422 |
|
| 423 |
# 3) Compute cosine similarity
|
| 424 |
sim_matrix = self.cosine_similarity(query_embeds, candidate_embeds)
|