Spaces:
Sleeping
Sleeping
Create whisper_cs.py
Browse files- whisper_cs.py +326 -0
whisper_cs.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
from pydub import AudioSegment
|
| 3 |
+
import os
|
| 4 |
+
import torchaudio
|
| 5 |
+
import torch
|
| 6 |
+
import re
|
| 7 |
+
from transformers import pipeline, WhisperForConditionalGeneration, WhisperProcessor, GenerationConfig
|
| 8 |
+
from pyannote.audio import Pipeline as DiarizationPipeline
|
| 9 |
+
import whisperx
|
| 10 |
+
import whisper_timestamped as whisper_ts
|
| 11 |
+
from typing import Dict
|
| 12 |
+
|
| 13 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
| 14 |
+
torch_dtype = torch.float32
|
| 15 |
+
|
| 16 |
+
MODEL_PATH_1 = "projecte-aina/whisper-large-v3-tiny-caesar"
|
| 17 |
+
MODEL_PATH_2 = "langtech-veu/whisper-timestamped-cs"
|
| 18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
|
| 20 |
+
def clean_text(input_text):
|
| 21 |
+
remove_chars = ['.', ',', ';', ':', '¿', '?', '«', '»', '-', '¡', '!', '@',
|
| 22 |
+
'*', '{', '}', '[', ']', '=', '/', '\\', '&', '#', '…']
|
| 23 |
+
output_text = ''.join(char if char not in remove_chars else ' ' for char in input_text)
|
| 24 |
+
return ' '.join(output_text.split()).lower()
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def split_stereo_channels(audio_path):
|
| 28 |
+
ext = os.path.splitext(audio_path)[1].lower()
|
| 29 |
+
|
| 30 |
+
if ext == ".wav":
|
| 31 |
+
audio = AudioSegment.from_wav(audio_path)
|
| 32 |
+
elif ext == ".mp3":
|
| 33 |
+
audio = AudioSegment.from_file(audio_path, format="mp3")
|
| 34 |
+
else:
|
| 35 |
+
raise ValueError(f"Unsupported file format: {audio_path}")
|
| 36 |
+
|
| 37 |
+
channels = audio.split_to_mono()
|
| 38 |
+
if len(channels) != 2:
|
| 39 |
+
raise ValueError(f"Audio {audio_path} does not have 2 channels.")
|
| 40 |
+
|
| 41 |
+
channels[0].export(f"temp_mono_speaker1.wav", format="wav") # Right
|
| 42 |
+
channels[1].export(f"temp_mono_speaker2.wav", format="wav") # Left
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def convert_to_mono(input_path):
|
| 46 |
+
audio = AudioSegment.from_file(input_path)
|
| 47 |
+
base, ext = os.path.splitext(input_path)
|
| 48 |
+
output_path = f"{base}_merged.wav"
|
| 49 |
+
print('output_path',output_path)
|
| 50 |
+
mono = audio.set_channels(1)
|
| 51 |
+
mono.export(output_path, format="wav")
|
| 52 |
+
return output_path
|
| 53 |
+
|
| 54 |
+
def save_temp_audio(waveform, sample_rate, path):
|
| 55 |
+
waveform = waveform.unsqueeze(0) if waveform.dim() == 1 else waveform
|
| 56 |
+
torchaudio.save(path, waveform, sample_rate)
|
| 57 |
+
|
| 58 |
+
def format_audio(audio_path):
|
| 59 |
+
input_audio, sample_rate = torchaudio.load(audio_path)
|
| 60 |
+
if input_audio.shape[0] == 2:
|
| 61 |
+
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
|
| 62 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
| 63 |
+
input_audio = resampler(input_audio)
|
| 64 |
+
print('resampled')
|
| 65 |
+
return input_audio.squeeze(), 16000
|
| 66 |
+
|
| 67 |
+
def assign_timestamps(asr_segments, audio_path):
|
| 68 |
+
waveform, sr = format_audio(audio_path)
|
| 69 |
+
total_duration = waveform.shape[-1] / sr
|
| 70 |
+
|
| 71 |
+
total_words = sum(len(seg["text"].split()) for seg in asr_segments)
|
| 72 |
+
if total_words == 0:
|
| 73 |
+
raise ValueError("Total number of words in ASR segments is zero. Cannot assign timestamps.")
|
| 74 |
+
|
| 75 |
+
avg_word_duration = total_duration / total_words
|
| 76 |
+
|
| 77 |
+
current_time = 0.0
|
| 78 |
+
for segment in asr_segments:
|
| 79 |
+
word_count = len(segment["text"].split())
|
| 80 |
+
segment_duration = word_count * avg_word_duration
|
| 81 |
+
segment["start"] = round(current_time, 3)
|
| 82 |
+
segment["end"] = round(current_time + segment_duration, 3)
|
| 83 |
+
current_time += segment_duration
|
| 84 |
+
|
| 85 |
+
return asr_segments
|
| 86 |
+
|
| 87 |
+
def hf_chunks_to_whisperx_segments(chunks):
|
| 88 |
+
return [
|
| 89 |
+
{
|
| 90 |
+
"text": chunk["text"],
|
| 91 |
+
"start": chunk["timestamp"][0],
|
| 92 |
+
"end": chunk["timestamp"][1],
|
| 93 |
+
}
|
| 94 |
+
for chunk in chunks
|
| 95 |
+
if chunk["timestamp"] and isinstance(chunk["timestamp"], (list, tuple))
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
def align_words_to_segments(words, segments, window=5.0):
|
| 99 |
+
aligned = []
|
| 100 |
+
seg_idx = 0
|
| 101 |
+
for word in words:
|
| 102 |
+
while seg_idx < len(segments) and segments[seg_idx]["end"] < word["start"] - window:
|
| 103 |
+
seg_idx += 1
|
| 104 |
+
for j in range(seg_idx, len(segments)):
|
| 105 |
+
seg = segments[j]
|
| 106 |
+
if seg["start"] > word["end"] + window:
|
| 107 |
+
break
|
| 108 |
+
if seg["start"] <= word["start"] < seg["end"]:
|
| 109 |
+
aligned.append((word, seg))
|
| 110 |
+
break
|
| 111 |
+
return aligned
|
| 112 |
+
|
| 113 |
+
def post_process_transcription(transcription, max_repeats=2):
|
| 114 |
+
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
|
| 115 |
+
|
| 116 |
+
cleaned_tokens = []
|
| 117 |
+
repetition_count = 0
|
| 118 |
+
previous_token = None
|
| 119 |
+
|
| 120 |
+
for token in tokens:
|
| 121 |
+
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
|
| 122 |
+
|
| 123 |
+
if reduced_token == previous_token:
|
| 124 |
+
repetition_count += 1
|
| 125 |
+
if repetition_count <= max_repeats:
|
| 126 |
+
cleaned_tokens.append(reduced_token)
|
| 127 |
+
else:
|
| 128 |
+
repetition_count = 1
|
| 129 |
+
cleaned_tokens.append(reduced_token)
|
| 130 |
+
|
| 131 |
+
previous_token = reduced_token
|
| 132 |
+
|
| 133 |
+
cleaned_transcription = " ".join(cleaned_tokens)
|
| 134 |
+
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
|
| 135 |
+
|
| 136 |
+
return cleaned_transcription
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
|
| 140 |
+
segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
|
| 141 |
+
merged_transcription = ''
|
| 142 |
+
current_speaker = None
|
| 143 |
+
current_segment = []
|
| 144 |
+
|
| 145 |
+
for i in range(1, len(segments) - 1, 2):
|
| 146 |
+
speaker_tag = segments[i]
|
| 147 |
+
text = segments[i + 1].strip()
|
| 148 |
+
|
| 149 |
+
speaker = re.search(r'\d{2}', speaker_tag).group()
|
| 150 |
+
|
| 151 |
+
if speaker == current_speaker:
|
| 152 |
+
current_segment.append(text)
|
| 153 |
+
else:
|
| 154 |
+
if current_speaker is not None:
|
| 155 |
+
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
|
| 156 |
+
current_speaker = speaker
|
| 157 |
+
current_segment = [text]
|
| 158 |
+
|
| 159 |
+
if current_speaker is not None:
|
| 160 |
+
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
|
| 161 |
+
|
| 162 |
+
return merged_transcription.strip()
|
| 163 |
+
|
| 164 |
+
def cleanup_temp_files(*file_paths):
|
| 165 |
+
for path in file_paths:
|
| 166 |
+
if path and os.path.exists(path):
|
| 167 |
+
os.remove(path)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def load_whisper_model(model_path: str):
|
| 172 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 173 |
+
model = whisper_ts.load_model(model_path, device=device)
|
| 174 |
+
return model
|
| 175 |
+
|
| 176 |
+
def transcribe_audio(model, audio_path: str) -> Dict:
|
| 177 |
+
try:
|
| 178 |
+
result = whisper_ts.transcribe(
|
| 179 |
+
model,
|
| 180 |
+
audio_path,
|
| 181 |
+
beam_size=5,
|
| 182 |
+
best_of=5,
|
| 183 |
+
temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 184 |
+
vad=False,
|
| 185 |
+
detect_disfluencies=True,
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
words = []
|
| 189 |
+
for segment in result.get('segments', []):
|
| 190 |
+
for word in segment.get('words', []):
|
| 191 |
+
word_text = word.get('word', '').strip()
|
| 192 |
+
if word_text.startswith(' '):
|
| 193 |
+
word_text = word_text[1:]
|
| 194 |
+
|
| 195 |
+
words.append({
|
| 196 |
+
'word': word_text,
|
| 197 |
+
'start': word.get('start', 0),
|
| 198 |
+
'end': word.get('end', 0),
|
| 199 |
+
'confidence': word.get('confidence', 0)
|
| 200 |
+
})
|
| 201 |
+
|
| 202 |
+
return {
|
| 203 |
+
'audio_path': audio_path,
|
| 204 |
+
'text': result['text'].strip(),
|
| 205 |
+
'segments': result.get('segments', []),
|
| 206 |
+
'words': words,
|
| 207 |
+
'duration': result.get('duration', 0),
|
| 208 |
+
'success': True
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
except Exception as e:
|
| 212 |
+
return {
|
| 213 |
+
'audio_path': audio_path,
|
| 214 |
+
'error': str(e),
|
| 215 |
+
'success': False
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
diarization_pipeline = DiarizationPipeline.from_pretrained("./pyannote/config.yaml")
|
| 221 |
+
align_model, metadata = whisperx.load_align_model(language_code="en", device=DEVICE)
|
| 222 |
+
|
| 223 |
+
asr_pipe = pipeline(
|
| 224 |
+
task="automatic-speech-recognition",
|
| 225 |
+
model=MODEL_PATH_1,
|
| 226 |
+
chunk_length_s=30,
|
| 227 |
+
device=DEVICE,
|
| 228 |
+
return_timestamps=True)
|
| 229 |
+
|
| 230 |
+
def diarization(audio_path):
|
| 231 |
+
diarization_result = diarization_pipeline(audio_path)
|
| 232 |
+
diarized_segments = list(diarization_result.itertracks(yield_label=True))
|
| 233 |
+
print('diarized_segments',diarized_segments)
|
| 234 |
+
return diarized_segments
|
| 235 |
+
|
| 236 |
+
def asr(audio_path):
|
| 237 |
+
print(f"[DEBUG] Starting ASR on audio: {audio_path}")
|
| 238 |
+
asr_result = asr_pipe(audio_path, return_timestamps=True)
|
| 239 |
+
print(f"[DEBUG] Raw ASR result: {asr_result}")
|
| 240 |
+
asr_segments = hf_chunks_to_whisperx_segments(asr_result['chunks'])
|
| 241 |
+
asr_segments = assign_timestamps(asr_segments, audio_path)
|
| 242 |
+
return asr_segments
|
| 243 |
+
|
| 244 |
+
def align_asr_to_diarization(asr_segments, diarized_segments, audio_path):
|
| 245 |
+
waveform, sample_rate = format_audio(audio_path)
|
| 246 |
+
|
| 247 |
+
word_segments = whisperx.align(asr_segments, align_model, metadata, waveform, DEVICE)
|
| 248 |
+
words = word_segments['word_segments']
|
| 249 |
+
|
| 250 |
+
diarized = [{"start": segment.start,"end": segment.end,"speaker": speaker} for segment, _, speaker in diarized_segments]
|
| 251 |
+
|
| 252 |
+
aligned_pairs = align_words_to_segments(words, diarized)
|
| 253 |
+
|
| 254 |
+
output = []
|
| 255 |
+
segment_map = {}
|
| 256 |
+
for word, segment in aligned_pairs:
|
| 257 |
+
key = (segment["start"], segment["end"], segment["speaker"])
|
| 258 |
+
if key not in segment_map:
|
| 259 |
+
segment_map[key] = []
|
| 260 |
+
segment_map[key].append(word["word"])
|
| 261 |
+
|
| 262 |
+
for (start, end, speaker), words in sorted(segment_map.items()):
|
| 263 |
+
output.append(f"[{speaker}] {' '.join(words)}")
|
| 264 |
+
|
| 265 |
+
return output
|
| 266 |
+
|
| 267 |
+
def generate(audio_path, use_v2):
|
| 268 |
+
|
| 269 |
+
if use_v2:
|
| 270 |
+
model = load_whisper_model(MODEL_PATH_2)
|
| 271 |
+
split_stereo_channels(audio_path)
|
| 272 |
+
|
| 273 |
+
left_channel_path = "temp_mono_speaker2.wav"
|
| 274 |
+
right_channel_path = "temp_mono_speaker1.wav"
|
| 275 |
+
|
| 276 |
+
left_waveform, left_sr = format_audio(left_channel_path)
|
| 277 |
+
right_waveform, right_sr = format_audio(right_channel_path)
|
| 278 |
+
left_result = transcribe_audio(model, left_waveform)
|
| 279 |
+
right_result = transcribe_audio(model, right_waveform)
|
| 280 |
+
|
| 281 |
+
def get_segments(result, speaker_label):
|
| 282 |
+
segments = result.get("segments", [])
|
| 283 |
+
if not segments:
|
| 284 |
+
return []
|
| 285 |
+
return [
|
| 286 |
+
(seg.get("start", 0.0), seg.get("end", 0.0), speaker_label, post_process_transcription(seg.get("text", "").strip()))
|
| 287 |
+
for seg in segments if seg.get("text")
|
| 288 |
+
]
|
| 289 |
+
|
| 290 |
+
left_segs = get_segments(left_result, "Speaker 1")
|
| 291 |
+
right_segs = get_segments(right_result, "Speaker 2")
|
| 292 |
+
|
| 293 |
+
merged_transcript = sorted(
|
| 294 |
+
left_segs + right_segs,
|
| 295 |
+
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
output = ""
|
| 299 |
+
for start, end, speaker, text in merged_transcript:
|
| 300 |
+
output += f"[{speaker}]: {text}\n"
|
| 301 |
+
|
| 302 |
+
clean_output = output.strip()
|
| 303 |
+
|
| 304 |
+
else:
|
| 305 |
+
mono_audio_path = convert_to_mono(audio_path)
|
| 306 |
+
waveform, sr = format_audio(mono_audio_path)
|
| 307 |
+
tmp_full_path = "tmp_full.wav"
|
| 308 |
+
save_temp_audio(waveform, sr, tmp_full_path)
|
| 309 |
+
diarized_segments = diarization(tmp_full_path)
|
| 310 |
+
asr_segments = asr(tmp_full_path)
|
| 311 |
+
for segment in asr_segments:
|
| 312 |
+
segment["text"] = post_process_transcription(segment["text"])
|
| 313 |
+
aligned_text = align_asr_to_diarization(asr_segments, diarized_segments, tmp_full_path)
|
| 314 |
+
|
| 315 |
+
clean_output = ""
|
| 316 |
+
for line in aligned_text:
|
| 317 |
+
clean_output += f"{line}\n"
|
| 318 |
+
clean_output = post_merge_consecutive_segments_from_text(clean_output)
|
| 319 |
+
cleanup_temp_files(mono_audio_path,tmp_full_path)
|
| 320 |
+
|
| 321 |
+
cleanup_temp_files(
|
| 322 |
+
"temp_mono_speaker1.wav",
|
| 323 |
+
"temp_mono_speaker2.wav"
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
return clean_output
|