Spaces:
Runtime error
Runtime error
| from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny | |
| from compel import Compel, ReturnedEmbeddingsType | |
| import torch | |
| import os | |
| try: | |
| import intel_extension_for_pytorch as ipex | |
| except: | |
| pass | |
| from PIL import Image | |
| import numpy as np | |
| import gradio as gr | |
| import psutil | |
| from sfast.compilers.stable_diffusion_pipeline_compiler import ( | |
| compile, | |
| CompilationConfig, | |
| ) | |
| SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| # check if MPS is available OSX only M1/M2/M3 chips | |
| mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() | |
| xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() | |
| device = torch.device( | |
| "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" | |
| ) | |
| torch_device = device | |
| torch_dtype = torch.float16 | |
| print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") | |
| print(f"device: {device}") | |
| if mps_available: | |
| device = torch.device("mps") | |
| torch_device = "cpu" | |
| torch_dtype = torch.float32 | |
| model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
| if SAFETY_CHECKER == "True": | |
| pipe = DiffusionPipeline.from_pretrained(model_id) | |
| else: | |
| pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None) | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.load_lora_weights( | |
| "latent-consistency/lcm-lora-sdxl", | |
| use_auth_token=HF_TOKEN, | |
| ) | |
| if device.type != "mps": | |
| pipe.unet.to(memory_format=torch.channels_last) | |
| pipe.to(device=torch_device, dtype=torch_dtype).to(device) | |
| # Load LCM LoRA | |
| config = CompilationConfig.Default() | |
| config.enable_xformers = True | |
| config.enable_triton = True | |
| config.enable_cuda_graph = True | |
| pipe = compile(pipe, config=config) | |
| compel_proc = Compel( | |
| tokenizer=[pipe.tokenizer, pipe.tokenizer_2], | |
| text_encoder=[pipe.text_encoder, pipe.text_encoder_2], | |
| returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
| requires_pooled=[False, True], | |
| ) | |
| def predict( | |
| prompt, | |
| guidance, | |
| steps, | |
| seed=1231231, | |
| randomize_bt=False, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_bt: | |
| seed = np.random.randint(0, 2**32 - 1) | |
| generator = torch.manual_seed(seed) | |
| prompt_embeds, pooled_prompt_embeds = compel_proc(prompt) | |
| results = pipe( | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| generator=generator, | |
| num_inference_steps=steps, | |
| guidance_scale=guidance, | |
| width=1024, | |
| height=1024, | |
| # original_inference_steps=params.lcm_steps, | |
| output_type="pil", | |
| ) | |
| nsfw_content_detected = ( | |
| results.nsfw_content_detected[0] | |
| if "nsfw_content_detected" in results | |
| else False | |
| ) | |
| if nsfw_content_detected: | |
| raise gr.Error("NSFW content detected.") | |
| return results.images[0], seed | |
| css = """ | |
| #container{ | |
| margin: 0 auto; | |
| max-width: 40rem; | |
| } | |
| #intro{ | |
| max-width: 100%; | |
| text-align: center; | |
| margin: 0 auto; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="container"): | |
| gr.Markdown( | |
| """# SDXL in 4 steps with Latent Consistency LoRAs | |
| SDXL is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](https://huggingface.co/blog/lcm_lora) or [technical report](https://huggingface.co/papers/2311.05556). | |
| """, | |
| elem_id="intro", | |
| ) | |
| with gr.Row(): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| placeholder="Insert your prompt here:", scale=5, container=False | |
| ) | |
| generate_bt = gr.Button("Generate", scale=1) | |
| image = gr.Image(type="filepath") | |
| with gr.Accordion("Advanced options", open=False): | |
| guidance = gr.Slider( | |
| label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001 | |
| ) | |
| steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1) | |
| with gr.Row(): | |
| seed = gr.Slider( | |
| randomize=True, | |
| minimum=0, | |
| maximum=12013012031030, | |
| label="Seed", | |
| step=1, | |
| scale=5, | |
| ) | |
| with gr.Group(): | |
| randomize_bt = gr.Checkbox(label="Randomize", value=False) | |
| random_seed = gr.Textbox(show_label=False) | |
| with gr.Accordion("Run with diffusers"): | |
| gr.Markdown( | |
| """## Running LCM-LoRAs it with `diffusers` | |
| ```bash | |
| pip install diffusers==0.23.0 | |
| ``` | |
| ```py | |
| from diffusers import DiffusionPipeline, LCMScheduler | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda") | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") #yes, it's a normal LoRA | |
| results = pipe( | |
| prompt="The spirit of a tamagotchi wandering in the city of Vienna", | |
| num_inference_steps=4, | |
| guidance_scale=0.0, | |
| ) | |
| results.images[0] | |
| ``` | |
| """ | |
| ) | |
| inputs = [prompt, guidance, steps, seed, randomize_bt] | |
| generate_bt.click(fn=predict, inputs=inputs, outputs=[image, random_seed]) | |
| demo.queue(api_open=False) | |
| demo.launch(show_api=False) |