Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,7 +25,6 @@ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
|
|
| 25 |
|
| 26 |
pipe.transformer.to(memory_format=torch.channels_last)
|
| 27 |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
| 28 |
-
#pipe.enable_model_cpu_offload()
|
| 29 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
| 30 |
|
| 31 |
|
|
@@ -47,7 +46,6 @@ def generate(slider_x, prompt, seed, recalc_directions, iterations, steps, guida
|
|
| 47 |
# check if avg diff for directions need to be re-calculated
|
| 48 |
print("slider_x", slider_x)
|
| 49 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
| 50 |
-
#torch.manual_seed(seed)
|
| 51 |
|
| 52 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
| 53 |
#avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
|
|
@@ -65,8 +63,6 @@ def generate(slider_x, prompt, seed, recalc_directions, iterations, steps, guida
|
|
| 65 |
scale=0, scale_2nd=0,
|
| 66 |
seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 67 |
|
| 68 |
-
|
| 69 |
-
#comma_concepts_x = ', '.join(slider_x)
|
| 70 |
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
|
| 71 |
|
| 72 |
avg_diff_x = avg_diff.cpu()
|
|
@@ -79,36 +75,16 @@ def update_scales(x,prompt,seed, steps, guidance_scale,
|
|
| 79 |
img2img_type = None, img = None,
|
| 80 |
controlnet_scale= None, ip_adapter_scale=None,):
|
| 81 |
avg_diff = avg_diff_x.cuda()
|
| 82 |
-
torch.manual_seed(seed)
|
| 83 |
if img2img_type=="controlnet canny" and img is not None:
|
| 84 |
control_img = process_controlnet_img(img)
|
| 85 |
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 86 |
elif img2img_type=="ip adapter" and img is not None:
|
| 87 |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 88 |
else:
|
| 89 |
-
image = clip_slider.generate(prompt,
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
@spaces.GPU
|
| 95 |
-
def update_x(x,y,prompt,seed, steps,
|
| 96 |
-
avg_diff_x, avg_diff_y,
|
| 97 |
-
img2img_type = None,
|
| 98 |
-
img = None):
|
| 99 |
-
avg_diff = avg_diff_x.cuda()
|
| 100 |
-
avg_diff_2nd = avg_diff_y.cuda()
|
| 101 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
| 102 |
-
return image
|
| 103 |
-
|
| 104 |
-
@spaces.GPU
|
| 105 |
-
def update_y(x,y,prompt,seed, steps,
|
| 106 |
-
avg_diff_x, avg_diff_y,
|
| 107 |
-
img2img_type = None,
|
| 108 |
-
img = None):
|
| 109 |
-
avg_diff = avg_diff_x.cuda()
|
| 110 |
-
avg_diff_2nd = avg_diff_y.cuda()
|
| 111 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
| 112 |
return image
|
| 113 |
|
| 114 |
def reset_recalc_directions():
|
|
|
|
| 25 |
|
| 26 |
pipe.transformer.to(memory_format=torch.channels_last)
|
| 27 |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
|
|
|
| 28 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
| 29 |
|
| 30 |
|
|
|
|
| 46 |
# check if avg diff for directions need to be re-calculated
|
| 47 |
print("slider_x", slider_x)
|
| 48 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
|
|
|
| 49 |
|
| 50 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
| 51 |
#avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
|
|
|
|
| 63 |
scale=0, scale_2nd=0,
|
| 64 |
seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 65 |
|
|
|
|
|
|
|
| 66 |
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
|
| 67 |
|
| 68 |
avg_diff_x = avg_diff.cpu()
|
|
|
|
| 75 |
img2img_type = None, img = None,
|
| 76 |
controlnet_scale= None, ip_adapter_scale=None,):
|
| 77 |
avg_diff = avg_diff_x.cuda()
|
|
|
|
| 78 |
if img2img_type=="controlnet canny" and img is not None:
|
| 79 |
control_img = process_controlnet_img(img)
|
| 80 |
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 81 |
elif img2img_type=="ip adapter" and img is not None:
|
| 82 |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 83 |
else:
|
| 84 |
+
image = clip_slider.generate(prompt,
|
| 85 |
+
#guidance_scale=guidance_scale,
|
| 86 |
+
scale=x,
|
| 87 |
+
seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
return image
|
| 89 |
|
| 90 |
def reset_recalc_directions():
|