Spaces:
Running
on
Zero
Running
on
Zero
Create clip_slider_pipeline.py
Browse files- clip_slider_pipeline.py +421 -0
clip_slider_pipeline.py
ADDED
|
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import diffusers
|
| 2 |
+
import torch
|
| 3 |
+
import random
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from constants import SUBJECTS, MEDIUMS
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
class CLIPSlider:
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
sd_pipe,
|
| 12 |
+
device: torch.device,
|
| 13 |
+
target_word: str,
|
| 14 |
+
opposite: str,
|
| 15 |
+
target_word_2nd: str = "",
|
| 16 |
+
opposite_2nd: str = "",
|
| 17 |
+
iterations: int = 300,
|
| 18 |
+
):
|
| 19 |
+
|
| 20 |
+
self.device = device
|
| 21 |
+
self.pipe = sd_pipe.to(self.device)
|
| 22 |
+
self.iterations = iterations
|
| 23 |
+
self.avg_diff = self.find_latent_direction(target_word, opposite)
|
| 24 |
+
if target_word_2nd != "" or opposite_2nd != "":
|
| 25 |
+
self.avg_diff_2nd = self.find_latent_direction(target_word_2nd, opposite_2nd)
|
| 26 |
+
else:
|
| 27 |
+
self.avg_diff_2nd = None
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def find_latent_direction(self,
|
| 31 |
+
target_word:str,
|
| 32 |
+
opposite:str):
|
| 33 |
+
|
| 34 |
+
# lets identify a latent direction by taking differences between opposites
|
| 35 |
+
# target_word = "happy"
|
| 36 |
+
# opposite = "sad"
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
positives = []
|
| 41 |
+
negatives = []
|
| 42 |
+
for i in tqdm(range(self.iterations)):
|
| 43 |
+
medium = random.choice(MEDIUMS)
|
| 44 |
+
subject = random.choice(SUBJECTS)
|
| 45 |
+
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
| 46 |
+
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 47 |
+
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 48 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 49 |
+
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 50 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 51 |
+
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 52 |
+
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 53 |
+
positives.append(pos)
|
| 54 |
+
negatives.append(neg)
|
| 55 |
+
|
| 56 |
+
positives = torch.cat(positives, dim=0)
|
| 57 |
+
negatives = torch.cat(negatives, dim=0)
|
| 58 |
+
|
| 59 |
+
diffs = positives - negatives
|
| 60 |
+
|
| 61 |
+
avg_diff = diffs.mean(0, keepdim=True)
|
| 62 |
+
return avg_diff
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def generate(self,
|
| 66 |
+
prompt = "a photo of a house",
|
| 67 |
+
scale = 2.,
|
| 68 |
+
scale_2nd = 0., # scale for the 2nd dim directions when avg_diff_2nd is not None
|
| 69 |
+
seed = 15,
|
| 70 |
+
only_pooler = False,
|
| 71 |
+
normalize_scales = False, # whether to normalize the scales when avg_diff_2nd is not None
|
| 72 |
+
correlation_weight_factor = 1.0,
|
| 73 |
+
**pipeline_kwargs
|
| 74 |
+
):
|
| 75 |
+
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
| 76 |
+
# if pooler token only [-4,4] work well
|
| 77 |
+
|
| 78 |
+
with torch.no_grad():
|
| 79 |
+
toks = self.pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 80 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 81 |
+
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
|
| 82 |
+
|
| 83 |
+
if self.avg_diff_2nd and normalize_scales:
|
| 84 |
+
denominator = abs(scale) + abs(scale_2nd)
|
| 85 |
+
scale = scale / denominator
|
| 86 |
+
scale_2nd = scale_2nd / denominator
|
| 87 |
+
if only_pooler:
|
| 88 |
+
prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + self.avg_diff * scale
|
| 89 |
+
if self.avg_diff_2nd:
|
| 90 |
+
prompt_embeds[:, toks.argmax()] += self.avg_diff_2nd * scale_2nd
|
| 91 |
+
else:
|
| 92 |
+
normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
|
| 93 |
+
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
|
| 94 |
+
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)
|
| 95 |
+
|
| 96 |
+
standard_weights = torch.ones_like(weights)
|
| 97 |
+
|
| 98 |
+
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
| 99 |
+
|
| 100 |
+
# weights = torch.sigmoid((weights-0.5)*7)
|
| 101 |
+
prompt_embeds = prompt_embeds + (
|
| 102 |
+
weights * self.avg_diff[None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
|
| 103 |
+
if self.avg_diff_2nd:
|
| 104 |
+
prompt_embeds += weights * self.avg_diff_2nd[None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale_2nd
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
torch.manual_seed(seed)
|
| 108 |
+
image = self.pipe(prompt_embeds=prompt_embeds, **pipeline_kwargs).images
|
| 109 |
+
|
| 110 |
+
return image
|
| 111 |
+
|
| 112 |
+
def spectrum(self,
|
| 113 |
+
prompt="a photo of a house",
|
| 114 |
+
low_scale=-2,
|
| 115 |
+
low_scale_2nd=-2,
|
| 116 |
+
high_scale=2,
|
| 117 |
+
high_scale_2nd=2,
|
| 118 |
+
steps=5,
|
| 119 |
+
seed=15,
|
| 120 |
+
only_pooler=False,
|
| 121 |
+
normalize_scales=False,
|
| 122 |
+
correlation_weight_factor=1.0,
|
| 123 |
+
**pipeline_kwargs
|
| 124 |
+
):
|
| 125 |
+
|
| 126 |
+
images = []
|
| 127 |
+
for i in range(steps):
|
| 128 |
+
scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
|
| 129 |
+
scale_2nd = low_scale_2nd + (high_scale_2nd - low_scale_2nd) * i / (steps - 1)
|
| 130 |
+
image = self.generate(prompt, scale, scale_2nd, seed, only_pooler, normalize_scales, correlation_weight_factor, **pipeline_kwargs)
|
| 131 |
+
images.append(image[0])
|
| 132 |
+
|
| 133 |
+
canvas = Image.new('RGB', (640 * steps, 640))
|
| 134 |
+
for i, im in enumerate(images):
|
| 135 |
+
canvas.paste(im, (640 * i, 0))
|
| 136 |
+
|
| 137 |
+
return canvas
|
| 138 |
+
|
| 139 |
+
class CLIPSliderXL(CLIPSlider):
|
| 140 |
+
|
| 141 |
+
def find_latent_direction(self,
|
| 142 |
+
target_word:str,
|
| 143 |
+
opposite:str):
|
| 144 |
+
|
| 145 |
+
# lets identify a latent direction by taking differences between opposites
|
| 146 |
+
# target_word = "happy"
|
| 147 |
+
# opposite = "sad"
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
with torch.no_grad():
|
| 151 |
+
positives = []
|
| 152 |
+
negatives = []
|
| 153 |
+
positives2 = []
|
| 154 |
+
negatives2 = []
|
| 155 |
+
for i in tqdm(range(self.iterations)):
|
| 156 |
+
medium = random.choice(MEDIUMS)
|
| 157 |
+
subject = random.choice(SUBJECTS)
|
| 158 |
+
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
| 159 |
+
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 160 |
+
|
| 161 |
+
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 162 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 163 |
+
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 164 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 165 |
+
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 166 |
+
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 167 |
+
positives.append(pos)
|
| 168 |
+
negatives.append(neg)
|
| 169 |
+
|
| 170 |
+
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 171 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
| 172 |
+
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 173 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
| 174 |
+
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
| 175 |
+
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
| 176 |
+
positives2.append(pos2)
|
| 177 |
+
negatives2.append(neg2)
|
| 178 |
+
|
| 179 |
+
positives = torch.cat(positives, dim=0)
|
| 180 |
+
negatives = torch.cat(negatives, dim=0)
|
| 181 |
+
diffs = positives - negatives
|
| 182 |
+
avg_diff = diffs.mean(0, keepdim=True)
|
| 183 |
+
|
| 184 |
+
positives2 = torch.cat(positives2, dim=0)
|
| 185 |
+
negatives2 = torch.cat(negatives2, dim=0)
|
| 186 |
+
diffs2 = positives2 - negatives2
|
| 187 |
+
avg_diff2 = diffs2.mean(0, keepdim=True)
|
| 188 |
+
return (avg_diff, avg_diff2)
|
| 189 |
+
|
| 190 |
+
def generate(self,
|
| 191 |
+
prompt = "a photo of a house",
|
| 192 |
+
scale = 2,
|
| 193 |
+
scale_2nd = 2,
|
| 194 |
+
seed = 15,
|
| 195 |
+
only_pooler = False,
|
| 196 |
+
normalize_scales = False,
|
| 197 |
+
correlation_weight_factor = 1.0,
|
| 198 |
+
**pipeline_kwargs
|
| 199 |
+
):
|
| 200 |
+
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
| 201 |
+
# if pooler token only [-4,4] work well
|
| 202 |
+
|
| 203 |
+
text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
|
| 204 |
+
tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
|
| 205 |
+
with torch.no_grad():
|
| 206 |
+
# toks = pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=77).input_ids.cuda()
|
| 207 |
+
# prompt_embeds = pipe.text_encoder(toks).last_hidden_state
|
| 208 |
+
|
| 209 |
+
prompt_embeds_list = []
|
| 210 |
+
|
| 211 |
+
for i, text_encoder in enumerate(text_encoders):
|
| 212 |
+
|
| 213 |
+
tokenizer = tokenizers[i]
|
| 214 |
+
text_inputs = tokenizer(
|
| 215 |
+
prompt,
|
| 216 |
+
padding="max_length",
|
| 217 |
+
max_length=tokenizer.model_max_length,
|
| 218 |
+
truncation=True,
|
| 219 |
+
return_tensors="pt",
|
| 220 |
+
)
|
| 221 |
+
toks = text_inputs.input_ids
|
| 222 |
+
|
| 223 |
+
prompt_embeds = text_encoder(
|
| 224 |
+
toks.to(text_encoder.device),
|
| 225 |
+
output_hidden_states=True,
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
| 229 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
| 230 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 231 |
+
|
| 232 |
+
if self.avg_diff_2nd and normalize_scales:
|
| 233 |
+
denominator = abs(scale) + abs(scale_2nd)
|
| 234 |
+
scale = scale / denominator
|
| 235 |
+
scale_2nd = scale_2nd / denominator
|
| 236 |
+
if only_pooler:
|
| 237 |
+
prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + self.avg_diff[0] * scale
|
| 238 |
+
if self.avg_diff_2nd:
|
| 239 |
+
prompt_embeds[:, toks.argmax()] += self.avg_diff_2nd[0] * scale_2nd
|
| 240 |
+
else:
|
| 241 |
+
normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
|
| 242 |
+
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
|
| 243 |
+
|
| 244 |
+
if i == 0:
|
| 245 |
+
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)
|
| 246 |
+
|
| 247 |
+
standard_weights = torch.ones_like(weights)
|
| 248 |
+
|
| 249 |
+
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
| 250 |
+
prompt_embeds = prompt_embeds + (weights * self.avg_diff[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
|
| 251 |
+
if self.avg_diff_2nd:
|
| 252 |
+
prompt_embeds += (weights * self.avg_diff_2nd[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale_2nd)
|
| 253 |
+
else:
|
| 254 |
+
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)
|
| 255 |
+
|
| 256 |
+
standard_weights = torch.ones_like(weights)
|
| 257 |
+
|
| 258 |
+
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
| 259 |
+
prompt_embeds = prompt_embeds + (weights * self.avg_diff[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale)
|
| 260 |
+
if self.avg_diff_2nd:
|
| 261 |
+
prompt_embeds += (weights * self.avg_diff_2nd[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale_2nd)
|
| 262 |
+
|
| 263 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 264 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
| 265 |
+
prompt_embeds_list.append(prompt_embeds)
|
| 266 |
+
|
| 267 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
| 268 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
| 269 |
+
|
| 270 |
+
torch.manual_seed(seed)
|
| 271 |
+
image = self.pipe(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds,
|
| 272 |
+
**pipeline_kwargs).images
|
| 273 |
+
|
| 274 |
+
return image
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
class CLIPSlider3(CLIPSlider):
|
| 278 |
+
def find_latent_direction(self,
|
| 279 |
+
target_word:str,
|
| 280 |
+
opposite:str):
|
| 281 |
+
|
| 282 |
+
# lets identify a latent direction by taking differences between opposites
|
| 283 |
+
# target_word = "happy"
|
| 284 |
+
# opposite = "sad"
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
with torch.no_grad():
|
| 288 |
+
positives = []
|
| 289 |
+
negatives = []
|
| 290 |
+
positives2 = []
|
| 291 |
+
negatives2 = []
|
| 292 |
+
for i in tqdm(range(self.iterations)):
|
| 293 |
+
medium = random.choice(MEDIUMS)
|
| 294 |
+
subject = random.choice(SUBJECTS)
|
| 295 |
+
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
| 296 |
+
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 297 |
+
|
| 298 |
+
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 299 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 300 |
+
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 301 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 302 |
+
pos = self.pipe.text_encoder(pos_toks).text_embeds
|
| 303 |
+
neg = self.pipe.text_encoder(neg_toks).text_embeds
|
| 304 |
+
positives.append(pos)
|
| 305 |
+
negatives.append(neg)
|
| 306 |
+
|
| 307 |
+
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 308 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
| 309 |
+
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 310 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
| 311 |
+
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
| 312 |
+
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
| 313 |
+
positives2.append(pos2)
|
| 314 |
+
negatives2.append(neg2)
|
| 315 |
+
|
| 316 |
+
positives = torch.cat(positives, dim=0)
|
| 317 |
+
negatives = torch.cat(negatives, dim=0)
|
| 318 |
+
diffs = positives - negatives
|
| 319 |
+
avg_diff = diffs.mean(0, keepdim=True)
|
| 320 |
+
|
| 321 |
+
positives2 = torch.cat(positives2, dim=0)
|
| 322 |
+
negatives2 = torch.cat(negatives2, dim=0)
|
| 323 |
+
diffs2 = positives2 - negatives2
|
| 324 |
+
avg_diff2 = diffs2.mean(0, keepdim=True)
|
| 325 |
+
return (avg_diff, avg_diff2)
|
| 326 |
+
|
| 327 |
+
def generate(self,
|
| 328 |
+
prompt = "a photo of a house",
|
| 329 |
+
scale = 2,
|
| 330 |
+
seed = 15,
|
| 331 |
+
only_pooler = False,
|
| 332 |
+
correlation_weight_factor = 1.0,
|
| 333 |
+
** pipeline_kwargs
|
| 334 |
+
):
|
| 335 |
+
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
| 336 |
+
# if pooler token only [-4,4] work well
|
| 337 |
+
clip_text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
|
| 338 |
+
clip_tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
|
| 339 |
+
with torch.no_grad():
|
| 340 |
+
# toks = pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=77).input_ids.cuda()
|
| 341 |
+
# prompt_embeds = pipe.text_encoder(toks).last_hidden_state
|
| 342 |
+
|
| 343 |
+
clip_prompt_embeds_list = []
|
| 344 |
+
clip_pooled_prompt_embeds_list = []
|
| 345 |
+
for i, text_encoder in enumerate(clip_text_encoders):
|
| 346 |
+
|
| 347 |
+
if i < 2:
|
| 348 |
+
tokenizer = clip_tokenizers[i]
|
| 349 |
+
text_inputs = tokenizer(
|
| 350 |
+
prompt,
|
| 351 |
+
padding="max_length",
|
| 352 |
+
max_length=tokenizer.model_max_length,
|
| 353 |
+
truncation=True,
|
| 354 |
+
return_tensors="pt",
|
| 355 |
+
)
|
| 356 |
+
toks = text_inputs.input_ids
|
| 357 |
+
|
| 358 |
+
prompt_embeds = text_encoder(
|
| 359 |
+
toks.to(text_encoder.device),
|
| 360 |
+
output_hidden_states=True,
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
| 364 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
| 365 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
| 366 |
+
clip_pooled_prompt_embeds_list.append(pooled_prompt_embeds)
|
| 367 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 368 |
+
else:
|
| 369 |
+
text_inputs = self.pipe.tokenizer_3(
|
| 370 |
+
prompt,
|
| 371 |
+
padding="max_length",
|
| 372 |
+
max_length=self.tokenizer_max_length,
|
| 373 |
+
truncation=True,
|
| 374 |
+
add_special_tokens=True,
|
| 375 |
+
return_tensors="pt",
|
| 376 |
+
)
|
| 377 |
+
toks = text_inputs.input_ids
|
| 378 |
+
prompt_embeds = self.pipe.text_encoder_3(toks.to(self.device))[0]
|
| 379 |
+
t5_prompt_embed_shape = prompt_embeds.shape[-1]
|
| 380 |
+
|
| 381 |
+
if only_pooler:
|
| 382 |
+
prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + self.avg_diff[0] * scale
|
| 383 |
+
else:
|
| 384 |
+
normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
|
| 385 |
+
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
|
| 386 |
+
if i == 0:
|
| 387 |
+
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)
|
| 388 |
+
|
| 389 |
+
standard_weights = torch.ones_like(weights)
|
| 390 |
+
|
| 391 |
+
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
| 392 |
+
prompt_embeds = prompt_embeds + (weights * self.avg_diff[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
|
| 393 |
+
else:
|
| 394 |
+
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)
|
| 395 |
+
|
| 396 |
+
standard_weights = torch.ones_like(weights)
|
| 397 |
+
|
| 398 |
+
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
| 399 |
+
prompt_embeds = prompt_embeds + (weights * self.avg_diff[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale)
|
| 400 |
+
|
| 401 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 402 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
| 403 |
+
if i < 2:
|
| 404 |
+
clip_prompt_embeds_list.append(prompt_embeds)
|
| 405 |
+
|
| 406 |
+
clip_prompt_embeds = torch.concat(clip_prompt_embeds_list, dim=-1)
|
| 407 |
+
clip_pooled_prompt_embeds = torch.concat(clip_pooled_prompt_embeds_list, dim=-1)
|
| 408 |
+
|
| 409 |
+
clip_prompt_embeds = torch.nn.functional.pad(
|
| 410 |
+
clip_prompt_embeds, (0, t5_prompt_embed_shape - clip_prompt_embeds.shape[-1])
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
prompt_embeds = torch.cat([clip_prompt_embeds, prompt_embeds], dim=-2)
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
torch.manual_seed(seed)
|
| 418 |
+
image = self.pipe(prompt_embeds=prompt_embeds, pooled_prompt_embeds=clip_pooled_prompt_embeds,
|
| 419 |
+
**pipeline_kwargs).images
|
| 420 |
+
|
| 421 |
+
return image
|