Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,10 @@ import time
|
|
| 7 |
import numpy as np
|
| 8 |
import cv2
|
| 9 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
def process_controlnet_img(image):
|
| 12 |
controlnet_img = np.array(image)
|
|
@@ -20,27 +24,12 @@ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
|
|
| 20 |
#pipe.enable_model_cpu_offload()
|
| 21 |
t5_slider = T5SliderFlux(pipe, device=torch.device("cuda"))
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
# controlnet = ControlNetModel.from_pretrained(
|
| 31 |
-
# "xinsir/controlnet-canny-sdxl-1.0", # insert here your choice of controlnet
|
| 32 |
-
# torch_dtype=torch.float16
|
| 33 |
-
# )
|
| 34 |
-
# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 35 |
-
# pipe_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 36 |
-
# "sd-community/sdxl-flash",
|
| 37 |
-
# controlnet=controlnet,
|
| 38 |
-
# vae=vae,
|
| 39 |
-
# torch_dtype=torch.float16,
|
| 40 |
-
# )
|
| 41 |
-
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
| 42 |
-
|
| 43 |
-
# clip_slider_inv = CLIPSliderXL_inv(sd_pipe=pipe_inv,device=torch.device("cuda"))
|
| 44 |
|
| 45 |
@spaces.GPU(duration=120)
|
| 46 |
def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale,
|
|
@@ -72,7 +61,7 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale
|
|
| 72 |
|
| 73 |
if img2img_type=="controlnet canny" and img is not None:
|
| 74 |
control_img = process_controlnet_img(img)
|
| 75 |
-
image =
|
| 76 |
elif img2img_type=="ip adapter" and img is not None:
|
| 77 |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
| 78 |
else: # text to image
|
|
@@ -98,7 +87,7 @@ def update_scales(x,y,prompt,seed, steps, guidance_scale,
|
|
| 98 |
avg_diff_2nd = avg_diff_y.cuda()
|
| 99 |
if img2img_type=="controlnet canny" and img is not None:
|
| 100 |
control_img = process_controlnet_img(img)
|
| 101 |
-
image =
|
| 102 |
elif img2img_type=="ip adapter" and img is not None:
|
| 103 |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
| 104 |
else:
|
|
@@ -197,7 +186,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 197 |
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
| 198 |
slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
| 199 |
slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
| 200 |
-
img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="")
|
| 201 |
prompt_a = gr.Textbox(label="Prompt")
|
| 202 |
submit_a = gr.Button("Submit")
|
| 203 |
with gr.Column():
|
|
@@ -231,6 +220,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 231 |
maximum=5.0,
|
| 232 |
step=0.1,
|
| 233 |
value=0.8,
|
|
|
|
| 234 |
)
|
| 235 |
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
| 236 |
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
import cv2
|
| 9 |
from PIL import Image
|
| 10 |
+
from diffusers.utils import load_image
|
| 11 |
+
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
|
| 12 |
+
from diffusers.models.controlnet_flux import FluxControlNetModel
|
| 13 |
+
|
| 14 |
|
| 15 |
def process_controlnet_img(image):
|
| 16 |
controlnet_img = np.array(image)
|
|
|
|
| 24 |
#pipe.enable_model_cpu_offload()
|
| 25 |
t5_slider = T5SliderFlux(pipe, device=torch.device("cuda"))
|
| 26 |
|
| 27 |
+
base_model = 'black-forest-labs/FLUX.1-schnell'
|
| 28 |
+
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
|
| 29 |
+
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
| 30 |
+
pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
| 31 |
+
t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
| 32 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
@spaces.GPU(duration=120)
|
| 35 |
def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale,
|
|
|
|
| 61 |
|
| 62 |
if img2img_type=="controlnet canny" and img is not None:
|
| 63 |
control_img = process_controlnet_img(img)
|
| 64 |
+
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
| 65 |
elif img2img_type=="ip adapter" and img is not None:
|
| 66 |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
| 67 |
else: # text to image
|
|
|
|
| 87 |
avg_diff_2nd = avg_diff_y.cuda()
|
| 88 |
if img2img_type=="controlnet canny" and img is not None:
|
| 89 |
control_img = process_controlnet_img(img)
|
| 90 |
+
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
| 91 |
elif img2img_type=="ip adapter" and img is not None:
|
| 92 |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
| 93 |
else:
|
|
|
|
| 186 |
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
| 187 |
slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
| 188 |
slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
| 189 |
+
img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="", visible=False, value="controlnet canny")
|
| 190 |
prompt_a = gr.Textbox(label="Prompt")
|
| 191 |
submit_a = gr.Button("Submit")
|
| 192 |
with gr.Column():
|
|
|
|
| 220 |
maximum=5.0,
|
| 221 |
step=0.1,
|
| 222 |
value=0.8,
|
| 223 |
+
visible=False
|
| 224 |
)
|
| 225 |
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
| 226 |
|