Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,355 Bytes
f4ba42f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import tqdm
import torch
from dust3r.utils.device import to_cpu, collate_with_cat
from dust3r.utils.misc import invalid_to_nans
from dust3r.utils.geometry import depthmap_to_pts3d, geotrf
from dust3r.model import ARCroco3DStereo
from accelerate import Accelerator
import re
import time
def sample_query_points(mask, M):
B, H, W = mask.shape
yx = []
for b in range(B):
ys, xs = torch.where(mask[b])
if len(xs) == 0 or len(xs) < M:
pts = torch.zeros(M, 2, device=mask.device)
else:
idx = torch.randint(0, len(xs), (M,))
pts = torch.stack([xs[idx], ys[idx]], dim=-1)
yx.append(pts)
return torch.stack(yx, dim=0)
def custom_sort_key(key):
text = key.split("/")
if len(text) > 1:
text, num = text[0], text[-1]
return (text, int(num))
else:
return (key, -1)
def merge_chunk_dict(old_dict, curr_dict, add_number):
new_dict = {}
for key, value in curr_dict.items():
match = re.search(r"(\d+)$", key)
if match:
num_part = int(match.group()) + add_number
new_key = re.sub(r"(\d+)$", str(num_part), key, 1)
new_dict[new_key] = value
else:
new_dict[key] = value
new_dict = old_dict | new_dict
return {k: new_dict[k] for k in sorted(new_dict.keys(), key=custom_sort_key)}
def _interleave_imgs(img1, img2):
res = {}
for key, value1 in img1.items():
value2 = img2[key]
if isinstance(value1, torch.Tensor):
value = torch.stack((value1, value2), dim=1).flatten(0, 1)
else:
value = [x for pair in zip(value1, value2) for x in pair]
res[key] = value
return res
def make_batch_symmetric(batch):
view1, view2 = batch
view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1))
return view1, view2
def loss_of_one_batch(
batch,
model,
criterion,
accelerator: Accelerator,
teacher=None,
symmetrize_batch=False,
use_amp=False,
ret=None,
img_mask=None,
inference=False,
):
if len(batch) > 2:
assert (
symmetrize_batch is False
), "cannot symmetrize batch with more than 2 views"
if symmetrize_batch:
batch = make_batch_symmetric(batch)
if "valid_mask" in batch[0]:
query_pts = sample_query_points(batch[0]['valid_mask'], M=64).to(device=batch[0]["img"].device)
else:
query_pts = None
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16
with torch.cuda.amp.autocast(dtype=dtype):
if inference:
with torch.no_grad():
output = model.inference(batch, query_pts)
preds, batch = output.ress, output.views
result = dict(views=batch, pred=preds)
return result[ret] if ret else result
else:
output = model(batch, query_pts)
preds, batch = output.ress, output.views
if teacher is not None:
with torch.no_grad():
knowledge = teacher(batch, query_pts)
gts, batch = knowledge.ress, knowledge.views
with torch.cuda.amp.autocast(enabled=False):
loss = criterion(gts, preds) if criterion is not None else None
else:
with torch.cuda.amp.autocast(enabled=False):
loss = criterion(batch, preds) if criterion is not None else None
result = dict(views=batch, pred=preds, loss=loss)
return result[ret] if ret else result
def check_if_same_size(pairs):
shapes1 = [img1["img"].shape[-2:] for img1, img2 in pairs]
shapes2 = [img2["img"].shape[-2:] for img1, img2 in pairs]
return all(shapes1[0] == s for s in shapes1) and all(
shapes2[0] == s for s in shapes2
)
def get_pred_pts3d(gt, pred, use_pose=False, inplace=False):
if "depth" in pred and "pseudo_focal" in pred:
try:
pp = gt["camera_intrinsics"][..., :2, 2]
except KeyError:
pp = None
pts3d = depthmap_to_pts3d(**pred, pp=pp)
elif "pts3d" in pred:
pts3d = pred["pts3d"]
elif "pts3d_in_other_view" in pred:
assert use_pose is True
return (
pred["pts3d_in_other_view"]
if inplace
else pred["pts3d_in_other_view"].clone()
)
if use_pose:
camera_pose = pred.get("camera_pose")
assert camera_pose is not None
pts3d = geotrf(camera_pose, pts3d)
return pts3d
def find_opt_scaling(
gt_pts1,
gt_pts2,
pr_pts1,
pr_pts2=None,
fit_mode="weiszfeld_stop_grad",
valid1=None,
valid2=None,
):
assert gt_pts1.ndim == pr_pts1.ndim == 4
assert gt_pts1.shape == pr_pts1.shape
if gt_pts2 is not None:
assert gt_pts2.ndim == pr_pts2.ndim == 4
assert gt_pts2.shape == pr_pts2.shape
nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2)
nan_gt_pts2 = (
invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None
)
pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2)
pr_pts2 = (
invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None
)
all_gt = (
torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1)
if gt_pts2 is not None
else nan_gt_pts1
)
all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1
dot_gt_pr = (all_pr * all_gt).sum(dim=-1)
dot_gt_gt = all_gt.square().sum(dim=-1)
if fit_mode.startswith("avg"):
scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)
elif fit_mode.startswith("median"):
scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values
elif fit_mode.startswith("weiszfeld"):
scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)
for iter in range(10):
dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1)
w = dis.clip_(min=1e-8).reciprocal()
scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1)
else:
raise ValueError(f"bad {fit_mode=}")
if fit_mode.endswith("stop_grad"):
scaling = scaling.detach()
scaling = scaling.clip(min=1e-3)
return scaling
|