Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
| # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
| # | |
| # -------------------------------------------------------- | |
| # modified from DUSt3R | |
| import torch | |
| import dust3r.utils.path_to_croco # noqa: F401 | |
| from models.blocks import PatchEmbed # noqa | |
| def get_patch_embed(patch_embed_cls, img_size, patch_size, enc_embed_dim, in_chans=3): | |
| assert patch_embed_cls in ["PatchEmbedDust3R", "ManyAR_PatchEmbed"] | |
| patch_embed = eval(patch_embed_cls)(img_size, patch_size, in_chans, enc_embed_dim) | |
| return patch_embed | |
| class PatchEmbedDust3R(PatchEmbed): | |
| def forward(self, x, **kw): | |
| B, C, H, W = x.shape | |
| assert ( | |
| H % self.patch_size[0] == 0 | |
| ), f"Input image height ({H}) is not a multiple of patch size ({self.patch_size[0]})." | |
| assert ( | |
| W % self.patch_size[1] == 0 | |
| ), f"Input image width ({W}) is not a multiple of patch size ({self.patch_size[1]})." | |
| x = self.proj(x) | |
| pos = self.position_getter(B, x.size(2), x.size(3), x.device) | |
| if self.flatten: | |
| x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
| x = self.norm(x) | |
| return x, pos | |
| class ManyAR_PatchEmbed(PatchEmbed): | |
| """Handle images with non-square aspect ratio. | |
| All images in the same batch have the same aspect ratio. | |
| true_shape = [(height, width) ...] indicates the actual shape of each image. | |
| """ | |
| def __init__( | |
| self, | |
| img_size=224, | |
| patch_size=16, | |
| in_chans=3, | |
| embed_dim=768, | |
| norm_layer=None, | |
| flatten=True, | |
| ): | |
| self.embed_dim = embed_dim | |
| super().__init__(img_size, patch_size, in_chans, embed_dim, norm_layer, flatten) | |
| def forward(self, img, true_shape): | |
| B, C, H, W = img.shape | |
| assert ( | |
| H % self.patch_size[0] == 0 | |
| ), f"Input image height ({H}) is not a multiple of patch size ({self.patch_size[0]})." | |
| assert ( | |
| W % self.patch_size[1] == 0 | |
| ), f"Input image width ({W}) is not a multiple of patch size ({self.patch_size[1]})." | |
| assert true_shape.shape == ( | |
| B, | |
| 2, | |
| ), f"true_shape has the wrong shape={true_shape.shape}" | |
| W //= self.patch_size[0] | |
| H //= self.patch_size[1] | |
| n_tokens = H * W | |
| height, width = true_shape.T | |
| is_landscape = torch.ones_like(width, dtype=torch.bool) | |
| is_portrait = ~is_landscape | |
| x = img.new_zeros((B, n_tokens, self.embed_dim)) | |
| pos = img.new_zeros((B, n_tokens, 2), dtype=torch.int64) | |
| x[is_landscape] = ( | |
| self.proj(img[is_landscape]).permute(0, 2, 3, 1).flatten(1, 2).float() | |
| ) | |
| x[is_portrait] = ( | |
| self.proj(img[is_portrait].swapaxes(-1, -2)) | |
| .permute(0, 2, 3, 1) | |
| .flatten(1, 2) | |
| .float() | |
| ) | |
| pos[is_landscape] = self.position_getter(1, H, W, pos.device) | |
| pos[is_portrait] = self.position_getter(1, W, H, pos.device) | |
| x = self.norm(x) | |
| return x, pos | |