Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange, repeat | |
| from .blocks import EfficientUpdateFormer, CorrBlock | |
| from .utils import sample_features4d, get_2d_embedding, get_2d_sincos_pos_embed | |
| from .modules import Mlp | |
| class BaseTrackerPredictor(nn.Module): | |
| def __init__( | |
| self, | |
| stride=1, | |
| corr_levels=5, | |
| corr_radius=4, | |
| latent_dim=128, | |
| hidden_size=384, | |
| use_spaceatt=True, | |
| depth=6, | |
| max_scale=518, | |
| predict_conf=True, | |
| ): | |
| super(BaseTrackerPredictor, self).__init__() | |
| """ | |
| The base template to create a track predictor | |
| Modified from https://github.com/facebookresearch/co-tracker/ | |
| and https://github.com/facebookresearch/vggsfm | |
| """ | |
| self.stride = stride | |
| self.latent_dim = latent_dim | |
| self.corr_levels = corr_levels | |
| self.corr_radius = corr_radius | |
| self.hidden_size = hidden_size | |
| self.max_scale = max_scale | |
| self.predict_conf = predict_conf | |
| self.flows_emb_dim = latent_dim // 2 | |
| self.corr_mlp = Mlp( | |
| in_features=self.corr_levels * (self.corr_radius * 2 + 1) ** 2, | |
| hidden_features=self.hidden_size, | |
| out_features=self.latent_dim, | |
| ) | |
| self.transformer_dim = self.latent_dim + self.latent_dim + self.latent_dim + 4 | |
| self.query_ref_token = nn.Parameter(torch.randn(1, 2, self.transformer_dim)) | |
| space_depth = depth if use_spaceatt else 0 | |
| time_depth = depth | |
| self.updateformer = EfficientUpdateFormer( | |
| space_depth=space_depth, | |
| time_depth=time_depth, | |
| input_dim=self.transformer_dim, | |
| hidden_size=self.hidden_size, | |
| output_dim=self.latent_dim + 2, | |
| mlp_ratio=4.0, | |
| add_space_attn=use_spaceatt, | |
| ) | |
| self.fmap_norm = nn.LayerNorm(self.latent_dim) | |
| self.ffeat_norm = nn.GroupNorm(1, self.latent_dim) | |
| # A linear layer to update track feats at each iteration | |
| self.ffeat_updater = nn.Sequential(nn.Linear(self.latent_dim, self.latent_dim), nn.GELU()) | |
| self.vis_predictor = nn.Sequential(nn.Linear(self.latent_dim, 1)) | |
| if predict_conf: | |
| self.conf_predictor = nn.Sequential(nn.Linear(self.latent_dim, 1)) | |
| def forward(self, query_points, fmaps=None, iters=6, return_feat=False, down_ratio=1, apply_sigmoid=True): | |
| """ | |
| query_points: B x N x 2, the number of batches, tracks, and xy | |
| fmaps: B x S x C x HH x WW, the number of batches, frames, and feature dimension. | |
| note HH and WW is the size of feature maps instead of original images | |
| """ | |
| B, N, D = query_points.shape | |
| B, S, C, HH, WW = fmaps.shape | |
| assert D == 2, "Input points must be 2D coordinates" | |
| # apply a layernorm to fmaps here | |
| fmaps = self.fmap_norm(fmaps.permute(0, 1, 3, 4, 2)) | |
| fmaps = fmaps.permute(0, 1, 4, 2, 3) | |
| # Scale the input query_points because we may downsample the images | |
| # by down_ratio or self.stride | |
| # e.g., if a 3x1024x1024 image is processed to a 128x256x256 feature map | |
| # its query_points should be query_points/4 | |
| if down_ratio > 1: | |
| query_points = query_points / float(down_ratio) | |
| query_points = query_points / float(self.stride) | |
| # Init with coords as the query points | |
| # It means the search will start from the position of query points at the reference frames | |
| coords = query_points.clone().reshape(B, 1, N, 2).repeat(1, S, 1, 1) | |
| # Sample/extract the features of the query points in the query frame | |
| query_track_feat = sample_features4d(fmaps[:, 0], coords[:, 0]) | |
| # init track feats by query feats | |
| track_feats = query_track_feat.unsqueeze(1).repeat(1, S, 1, 1) # B, S, N, C | |
| # back up the init coords | |
| coords_backup = coords.clone() | |
| fcorr_fn = CorrBlock(fmaps, num_levels=self.corr_levels, radius=self.corr_radius) | |
| coord_preds = [] | |
| # Iterative Refinement | |
| for _ in range(iters): | |
| # Detach the gradients from the last iteration | |
| # (in my experience, not very important for performance) | |
| coords = coords.detach() | |
| fcorrs = fcorr_fn.corr_sample(track_feats, coords) | |
| corr_dim = fcorrs.shape[3] | |
| fcorrs_ = fcorrs.permute(0, 2, 1, 3).reshape(B * N, S, corr_dim) | |
| fcorrs_ = self.corr_mlp(fcorrs_) | |
| # Movement of current coords relative to query points | |
| flows = (coords - coords[:, 0:1]).permute(0, 2, 1, 3).reshape(B * N, S, 2) | |
| flows_emb = get_2d_embedding(flows, self.flows_emb_dim, cat_coords=False) | |
| # (In my trials, it is also okay to just add the flows_emb instead of concat) | |
| flows_emb = torch.cat([flows_emb, flows / self.max_scale, flows / self.max_scale], dim=-1) | |
| track_feats_ = track_feats.permute(0, 2, 1, 3).reshape(B * N, S, self.latent_dim) | |
| # Concatenate them as the input for the transformers | |
| transformer_input = torch.cat([flows_emb, fcorrs_, track_feats_], dim=2) | |
| # 2D positional embed | |
| # TODO: this can be much simplified | |
| pos_embed = get_2d_sincos_pos_embed(self.transformer_dim, grid_size=(HH, WW)).to(query_points.device) | |
| sampled_pos_emb = sample_features4d(pos_embed.expand(B, -1, -1, -1), coords[:, 0]) | |
| sampled_pos_emb = rearrange(sampled_pos_emb, "b n c -> (b n) c").unsqueeze(1) | |
| x = transformer_input + sampled_pos_emb | |
| # Add the query ref token to the track feats | |
| query_ref_token = torch.cat( | |
| [self.query_ref_token[:, 0:1], self.query_ref_token[:, 1:2].expand(-1, S - 1, -1)], dim=1 | |
| ) | |
| x = x + query_ref_token.to(x.device).to(x.dtype) | |
| # B, N, S, C | |
| x = rearrange(x, "(b n) s d -> b n s d", b=B) | |
| # Compute the delta coordinates and delta track features | |
| delta, _ = self.updateformer(x) | |
| # BN, S, C | |
| delta = rearrange(delta, " b n s d -> (b n) s d", b=B) | |
| delta_coords_ = delta[:, :, :2] | |
| delta_feats_ = delta[:, :, 2:] | |
| track_feats_ = track_feats_.reshape(B * N * S, self.latent_dim) | |
| delta_feats_ = delta_feats_.reshape(B * N * S, self.latent_dim) | |
| # Update the track features | |
| track_feats_ = self.ffeat_updater(self.ffeat_norm(delta_feats_)) + track_feats_ | |
| track_feats = track_feats_.reshape(B, N, S, self.latent_dim).permute(0, 2, 1, 3) # BxSxNxC | |
| # B x S x N x 2 | |
| coords = coords + delta_coords_.reshape(B, N, S, 2).permute(0, 2, 1, 3) | |
| # Force coord0 as query | |
| # because we assume the query points should not be changed | |
| coords[:, 0] = coords_backup[:, 0] | |
| # The predicted tracks are in the original image scale | |
| if down_ratio > 1: | |
| coord_preds.append(coords * self.stride * down_ratio) | |
| else: | |
| coord_preds.append(coords * self.stride) | |
| # B, S, N | |
| vis_e = self.vis_predictor(track_feats.reshape(B * S * N, self.latent_dim)).reshape(B, S, N) | |
| if apply_sigmoid: | |
| vis_e = torch.sigmoid(vis_e) | |
| if self.predict_conf: | |
| conf_e = self.conf_predictor(track_feats.reshape(B * S * N, self.latent_dim)).reshape(B, S, N) | |
| if apply_sigmoid: | |
| conf_e = torch.sigmoid(conf_e) | |
| else: | |
| conf_e = None | |
| if return_feat: | |
| return coord_preds, vis_e, track_feats, query_track_feat, conf_e | |
| else: | |
| return coord_preds, vis_e, conf_e | |