Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
| # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
| # -------------------------------------------------------- | |
| # Main encoder/decoder blocks | |
| # -------------------------------------------------------- | |
| # References: | |
| # timm | |
| # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
| # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/helpers.py | |
| # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py | |
| # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/mlp.py | |
| # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/patch_embed.py | |
| import torch | |
| import torch.nn as nn | |
| from itertools import repeat | |
| import collections.abc | |
| from torch.nn.functional import scaled_dot_product_attention | |
| def _ntuple(n): | |
| def parse(x): | |
| if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): | |
| return x | |
| return tuple(repeat(x, n)) | |
| return parse | |
| to_2tuple = _ntuple(2) | |
| def drop_path( | |
| x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True | |
| ): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
| if drop_prob == 0.0 or not training: | |
| return x | |
| keep_prob = 1 - drop_prob | |
| shape = (x.shape[0],) + (1,) * ( | |
| x.ndim - 1 | |
| ) # work with diff dim tensors, not just 2D ConvNets | |
| random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
| if keep_prob > 0.0 and scale_by_keep: | |
| random_tensor.div_(keep_prob) | |
| return x * random_tensor | |
| class DropPath(nn.Module): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
| def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): | |
| super(DropPath, self).__init__() | |
| self.drop_prob = drop_prob | |
| self.scale_by_keep = scale_by_keep | |
| def forward(self, x): | |
| return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
| def extra_repr(self): | |
| return f"drop_prob={round(self.drop_prob,3):0.3f}" | |
| class Mlp(nn.Module): | |
| """MLP as used in Vision Transformer, MLP-Mixer and related networks""" | |
| def __init__( | |
| self, | |
| in_features, | |
| hidden_features=None, | |
| out_features=None, | |
| act_layer=nn.GELU, | |
| bias=True, | |
| drop=0.0, | |
| ): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| bias = to_2tuple(bias) | |
| drop_probs = to_2tuple(drop) | |
| self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) | |
| self.act = act_layer() | |
| self.drop1 = nn.Dropout(drop_probs[0]) | |
| self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) | |
| self.drop2 = nn.Dropout(drop_probs[1]) | |
| def forward(self, x): | |
| return self.drop2(self.fc2(self.drop1(self.act(self.fc1(x))))) | |
| class Attention(nn.Module): | |
| def __init__( | |
| self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0 | |
| ): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = head_dim**-0.5 | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| self.rope = rope.float() if rope is not None else None | |
| def forward(self, x, xpos): | |
| B, N, C = x.shape | |
| qkv = ( | |
| self.qkv(x) | |
| .reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
| .transpose(1, 3) | |
| ) | |
| q, k, v = [qkv[:, :, i] for i in range(3)] | |
| # q,k,v = qkv.unbind(2) # make torchscript happy (cannot use tensor as tuple) | |
| q_type = q.dtype | |
| k_type = k.dtype | |
| if self.rope is not None: | |
| q = q.to(torch.float16) | |
| k = k.to(torch.float16) | |
| with torch.autocast(device_type="cuda", enabled=False): | |
| q = self.rope(q, xpos) | |
| k = self.rope(k, xpos) | |
| q = q.to(q_type) | |
| k = k.to(k_type) | |
| # attn = (q @ k.transpose(-2, -1)) * self.scale | |
| # attn = attn.softmax(dim=-1) | |
| # attn = self.attn_drop(attn) | |
| # x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| # x = memory_efficient_attention(query=q.permute(0, 2, 1, 3), key=k.permute(0, 2, 1, 3), value=v.permute(0, 2, 1, 3), p=self.attn_drop.p, scale=self.scale).reshape(B, N, C) | |
| x = ( | |
| scaled_dot_product_attention( | |
| query=q, key=k, value=v, dropout_p=self.attn_drop.p, scale=self.scale | |
| ) | |
| .transpose(1, 2) | |
| .reshape(B, N, C) | |
| ) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads, | |
| mlp_ratio=4.0, | |
| qkv_bias=False, | |
| drop=0.0, | |
| attn_drop=0.0, | |
| drop_path=0.0, | |
| act_layer=nn.GELU, | |
| norm_layer=nn.LayerNorm, | |
| rope=None, | |
| ): | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| rope=rope, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| attn_drop=attn_drop, | |
| proj_drop=drop, | |
| ) | |
| # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp( | |
| in_features=dim, | |
| hidden_features=mlp_hidden_dim, | |
| act_layer=act_layer, | |
| drop=drop, | |
| ) | |
| def forward(self, x, xpos): | |
| x = x + self.drop_path(self.attn(self.norm1(x), xpos)) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| return x | |
| class CrossAttention(nn.Module): | |
| def __init__( | |
| self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0 | |
| ): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = head_dim**-0.5 | |
| self.projq = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.projk = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.projv = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| self.rope = rope.float() if rope is not None else None | |
| def forward(self, query, key, value, qpos, kpos): | |
| B, Nq, C = query.shape | |
| Nk = key.shape[1] | |
| Nv = value.shape[1] | |
| q = ( | |
| self.projq(query) | |
| .reshape(B, Nq, self.num_heads, C // self.num_heads) | |
| .permute(0, 2, 1, 3) | |
| ) | |
| k = ( | |
| self.projk(key) | |
| .reshape(B, Nk, self.num_heads, C // self.num_heads) | |
| .permute(0, 2, 1, 3) | |
| ) | |
| v = ( | |
| self.projv(value) | |
| .reshape(B, Nv, self.num_heads, C // self.num_heads) | |
| .permute(0, 2, 1, 3) | |
| ) | |
| q_type = q.dtype | |
| k_type = k.dtype | |
| if self.rope is not None: | |
| if qpos is not None: | |
| q = q.to(torch.float16) | |
| with torch.autocast(device_type="cuda", enabled=False): | |
| q = self.rope(q, qpos) | |
| q = q.to(q_type) | |
| if kpos is not None: | |
| k = k.to(torch.float16) | |
| with torch.autocast(device_type="cuda", enabled=False): | |
| k = self.rope(k, kpos) | |
| k = k.to(k_type) | |
| # attn = (q @ k.transpose(-2, -1)) * self.scale | |
| # attn = attn.softmax(dim=-1) | |
| # attn = self.attn_drop(attn) | |
| # x = (attn @ v).transpose(1, 2).reshape(B, Nq, C) | |
| # x = memory_efficient_attention(query=q.permute(0, 2, 1, 3), key=k.permute(0, 2, 1, 3), value=v.permute(0, 2, 1, 3), p=self.attn_drop.p, scale=self.scale).reshape(B, Nq, C) | |
| x = ( | |
| scaled_dot_product_attention( | |
| query=q, key=k, value=v, dropout_p=self.attn_drop.p, scale=self.scale | |
| ) | |
| .transpose(1, 2) | |
| .reshape(B, Nq, C) | |
| ) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class DecoderBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads, | |
| mlp_ratio=4.0, | |
| qkv_bias=False, | |
| drop=0.0, | |
| attn_drop=0.0, | |
| drop_path=0.0, | |
| act_layer=nn.GELU, | |
| norm_layer=nn.LayerNorm, | |
| norm_mem=True, | |
| rope=None, | |
| ): | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| rope=rope, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| attn_drop=attn_drop, | |
| proj_drop=drop, | |
| ) | |
| self.cross_attn = CrossAttention( | |
| dim, | |
| rope=rope, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| attn_drop=attn_drop, | |
| proj_drop=drop, | |
| ) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| self.norm3 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp( | |
| in_features=dim, | |
| hidden_features=mlp_hidden_dim, | |
| act_layer=act_layer, | |
| drop=drop, | |
| ) | |
| self.norm_y = norm_layer(dim) if norm_mem else nn.Identity() | |
| def forward(self, x, y, xpos, ypos): | |
| x = x + self.drop_path(self.attn(self.norm1(x), xpos)) | |
| y_ = self.norm_y(y) | |
| x = x + self.drop_path(self.cross_attn(self.norm2(x), y_, y_, xpos, ypos)) | |
| x = x + self.drop_path(self.mlp(self.norm3(x))) | |
| return x, y | |
| # patch embedding | |
| class PositionGetter(object): | |
| """return positions of patches""" | |
| def __init__(self): | |
| self.cache_positions = {} | |
| def __call__(self, b, h, w, device): | |
| if not (h, w) in self.cache_positions: | |
| x = torch.arange(w, device=device) | |
| y = torch.arange(h, device=device) | |
| self.cache_positions[h, w] = torch.cartesian_prod(y, x) # (h, w, 2) | |
| pos = self.cache_positions[h, w].view(1, h * w, 2).expand(b, -1, 2).clone() | |
| return pos | |
| class PatchEmbed(nn.Module): | |
| """just adding _init_weights + position getter compared to timm.models.layers.patch_embed.PatchEmbed""" | |
| def __init__( | |
| self, | |
| img_size=224, | |
| patch_size=16, | |
| in_chans=3, | |
| embed_dim=768, | |
| norm_layer=None, | |
| flatten=True, | |
| ): | |
| super().__init__() | |
| img_size = to_2tuple(img_size) | |
| patch_size = to_2tuple(patch_size) | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
| self.num_patches = self.grid_size[0] * self.grid_size[1] | |
| self.flatten = flatten | |
| self.proj = nn.Conv2d( | |
| in_chans, embed_dim, kernel_size=patch_size, stride=patch_size | |
| ) | |
| self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
| self.position_getter = PositionGetter() | |
| def forward(self, x): | |
| B, C, H, W = x.shape | |
| torch._assert( | |
| H == self.img_size[0], | |
| f"Input image height ({H}) doesn't match model ({self.img_size[0]}).", | |
| ) | |
| torch._assert( | |
| W == self.img_size[1], | |
| f"Input image width ({W}) doesn't match model ({self.img_size[1]}).", | |
| ) | |
| x = self.proj(x) | |
| pos = self.position_getter(B, x.size(2), x.size(3), x.device) | |
| if self.flatten: | |
| x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
| x = self.norm(x) | |
| return x, pos | |
| def _init_weights(self): | |
| w = self.proj.weight.data | |
| torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |