Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
| # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
| # | |
| # -------------------------------------------------------- | |
| # utilitary functions for CroCo | |
| # -------------------------------------------------------- | |
| # References: | |
| # MAE: https://github.com/facebookresearch/mae | |
| # DeiT: https://github.com/facebookresearch/deit | |
| # BEiT: https://github.com/microsoft/unilm/tree/master/beit | |
| # -------------------------------------------------------- | |
| import builtins | |
| import datetime | |
| import os | |
| import time | |
| import math | |
| import json | |
| from collections import defaultdict, deque | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| import torch.distributed as dist | |
| from torch import inf | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| printer = get_logger(__name__, log_level="DEBUG") | |
| class SmoothedValue(object): | |
| """Track a series of values and provide access to smoothed values.""" | |
| def __init__(self, window_size=20, fmt=None): | |
| if fmt is None: | |
| fmt = "{median:.4f} ({global_avg:.4f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, n=1): | |
| self.deque.append(value) | |
| self.count += n | |
| self.total += value * n | |
| def synchronize_between_processes(self, accelerator: Accelerator): | |
| """Synchronize the count and total across all processes.""" | |
| if accelerator.num_processes == 1: | |
| return | |
| t = torch.tensor( | |
| [self.count, self.total], dtype=torch.float64, device=accelerator.device | |
| ) | |
| accelerator.wait_for_everyone() | |
| accelerator.reduce(t, reduction="sum") | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| return torch.tensor(list(self.deque)).median().item() | |
| def avg(self): | |
| return torch.tensor(list(self.deque), dtype=torch.float32).mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format( | |
| median=self.median, | |
| avg=self.avg, | |
| global_avg=self.global_avg, | |
| max=self.max, | |
| value=self.value, | |
| ) | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t"): | |
| self.meters = defaultdict(SmoothedValue) | |
| self.delimiter = delimiter | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if v is None: | |
| continue | |
| if isinstance(v, torch.Tensor): | |
| if v.ndim > 0: | |
| continue | |
| v = v.item() | |
| if isinstance(v, list): | |
| continue | |
| assert isinstance(v, (float, int)) | |
| self.meters[k].update(v) | |
| def __getattr__(self, attr): | |
| if attr in self.meters: | |
| return self.meters[attr] | |
| if attr in self.__dict__: | |
| return self.__dict__[attr] | |
| raise AttributeError( | |
| "'{}' object has no attribute '{}'".format(type(self).__name__, attr) | |
| ) | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append("{}: {}".format(name, str(meter))) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self, accelerator): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes(accelerator) | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def log_every( | |
| self, iterable, print_freq, accelerator: Accelerator, header=None, max_iter=None, start_step=0, | |
| ): | |
| i = 0 | |
| if not header: | |
| header = "" | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt="{avg:.4f}") | |
| data_time = SmoothedValue(fmt="{avg:.4f}") | |
| len_iterable = min(len(iterable), max_iter) if max_iter else len(iterable) | |
| space_fmt = ":" + str(len(str(len_iterable))) + "d" | |
| log_msg = [ | |
| header, | |
| "[{0" + space_fmt + "}/{1}]", | |
| "eta: {eta}", | |
| "{meters}", | |
| "time: {time}", | |
| "data: {data}", | |
| ] | |
| if torch.cuda.is_available(): | |
| log_msg.append("max mem: {memory:.0f}") | |
| log_msg = self.delimiter.join(log_msg) | |
| MB = 1024.0 * 1024.0 | |
| for it, obj in enumerate(iterable): | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0 or i == len_iterable - 1: | |
| eta_seconds = iter_time.global_avg * (len_iterable - i) | |
| eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
| if torch.cuda.is_available(): | |
| if accelerator.is_main_process: | |
| printer.info( | |
| log_msg.format( | |
| i, | |
| len_iterable, | |
| eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), | |
| data=str(data_time), | |
| memory=torch.cuda.max_memory_allocated() / MB, | |
| ) | |
| ) | |
| else: | |
| if accelerator.is_main_process: | |
| printer.info( | |
| log_msg.format( | |
| i, | |
| len_iterable, | |
| eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), | |
| data=str(data_time), | |
| ) | |
| ) | |
| i += 1 | |
| end = time.time() | |
| if max_iter and it >= max_iter: | |
| break | |
| # if i + start_step >= len_iterable: | |
| # break | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| if accelerator.is_main_process: | |
| printer.info( | |
| "{} Total time: {} ({:.4f} s / it)".format( | |
| header, total_time_str, total_time / len_iterable | |
| ) | |
| ) | |
| def setup_for_distributed(is_master): | |
| """ | |
| This function disables printing when not in master process | |
| """ | |
| builtin_print = builtins.print | |
| def print(*args, **kwargs): | |
| force = kwargs.pop("force", False) | |
| force = force or (get_world_size() > 8) | |
| if is_master or force: | |
| now = datetime.datetime.now().time() | |
| builtin_print("[{}] ".format(now), end="") # print with time stamp | |
| builtin_print(*args, **kwargs) | |
| builtins.print = print | |
| def is_dist_avail_and_initialized(): | |
| if not dist.is_available(): | |
| return False | |
| if not dist.is_initialized(): | |
| return False | |
| return True | |
| def get_world_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def get_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return dist.get_rank() | |
| def is_main_process(accelerator: Accelerator): | |
| return accelerator.is_main_process | |
| def save_on_master(accelerator: Accelerator, *args, **kwargs): | |
| if is_main_process(accelerator): | |
| # torch.save(*args, **kwargs) | |
| accelerator.save(*args, **kwargs) | |
| # unwrapped_model = accelerator.unwrap_model(model) | |
| # accelerator.save(unwrapped_model.state_dict(), checkpoint_path) | |
| def init_distributed_mode(args): | |
| nodist = args.nodist if hasattr(args, "nodist") else False | |
| if "RANK" in os.environ and "WORLD_SIZE" in os.environ and not nodist: | |
| args.rank = int(os.environ["RANK"]) | |
| args.world_size = int(os.environ["WORLD_SIZE"]) | |
| args.gpu = int(os.environ["LOCAL_RANK"]) | |
| else: | |
| print("Not using distributed mode") | |
| setup_for_distributed(is_master=True) # hack | |
| args.distributed = False | |
| return | |
| args.distributed = True | |
| torch.cuda.set_device(args.gpu) | |
| args.dist_backend = "nccl" | |
| print( | |
| "| distributed init (rank {}): {}, gpu {}".format( | |
| args.rank, args.dist_url, args.gpu | |
| ), | |
| flush=True, | |
| ) | |
| torch.distributed.init_process_group( | |
| backend=args.dist_backend, | |
| init_method=args.dist_url, | |
| world_size=args.world_size, | |
| rank=args.rank, | |
| ) | |
| torch.distributed.barrier() | |
| setup_for_distributed(args.rank == 0) | |
| class NativeScalerWithGradNormCount: | |
| state_dict_key = "amp_scaler" | |
| def __init__(self, enabled=True, accelerator: Accelerator = None): | |
| self.accelerator = accelerator | |
| def __call__( | |
| self, | |
| loss, | |
| optimizer, | |
| clip_grad=None, | |
| parameters=None, | |
| create_graph=False, | |
| update_grad=True, | |
| ): | |
| self.accelerator.backward( | |
| loss, create_graph=create_graph | |
| ) # .backward(create_graph=create_graph) | |
| if update_grad: | |
| if clip_grad is not None: | |
| assert parameters is not None | |
| # self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place | |
| norm = self.accelerator.clip_grad_norm_(parameters, clip_grad) | |
| else: | |
| if self.accelerator.scaler is not None: | |
| self.accelerator.unscale_gradients() | |
| norm = get_grad_norm_(parameters) | |
| optimizer.step() | |
| else: | |
| norm = None | |
| return norm | |
| def state_dict(self): | |
| if self.accelerator.scaler is not None: | |
| return self.accelerator.scaler.state_dict() | |
| else: | |
| return {} | |
| def load_state_dict(self, state_dict): | |
| if self.accelerator.scaler is not None: | |
| self.accelerator.scaler.load_state_dict(state_dict) | |
| # class NativeScalerWithGradNormCount: | |
| # state_dict_key = "amp_scaler" | |
| # def __init__(self, enabled=True, accelerator:Accelerator=None): | |
| # self._scaler = torch.cuda.amp.GradScaler(enabled=enabled) | |
| # self.accelerator = accelerator | |
| # def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): | |
| # # self.accelerator.backward(loss, create_graph=create_graph) #.backward(create_graph=create_graph) | |
| # self._scaler.scale(loss).backward(create_graph=create_graph) | |
| # if update_grad: | |
| # if clip_grad is not None: | |
| # assert parameters is not None | |
| # # #self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place | |
| # # norm = self.accelerator.clip_grad_norm_(parameters, clip_grad) | |
| # self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place | |
| # norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) | |
| # else: | |
| # # if self.accelerator.scaler is not None: | |
| # # self.accelerator.unscale_gradients() | |
| # # norm = get_grad_norm_(parameters) | |
| # self._scaler.unscale_(optimizer) | |
| # norm = get_grad_norm_(parameters) | |
| # # optimizer.step() | |
| # self._scaler.step(optimizer) | |
| # self._scaler.update() | |
| # else: | |
| # norm = None | |
| # return norm | |
| # # def state_dict(self): | |
| # # if self.accelerator.scaler is not None: | |
| # # return self.accelerator.scaler.state_dict() | |
| # # else: | |
| # # return {} | |
| # # def load_state_dict(self, state_dict): | |
| # # if self.accelerator.scaler is not None: | |
| # # self.accelerator.scaler.load_state_dict(state_dict) | |
| # def state_dict(self): | |
| # return self._scaler.state_dict() | |
| # def load_state_dict(self, state_dict): | |
| # self._scaler.load_state_dict(state_dict) | |
| def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: | |
| if isinstance(parameters, torch.Tensor): | |
| parameters = [parameters] | |
| parameters = [p for p in parameters if p.grad is not None] | |
| norm_type = float(norm_type) | |
| if len(parameters) == 0: | |
| return torch.tensor(0.0) | |
| device = parameters[0].grad.device | |
| if norm_type == inf: | |
| total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) | |
| else: | |
| total_norm = torch.norm( | |
| torch.stack( | |
| [torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters] | |
| ), | |
| norm_type, | |
| ) | |
| return total_norm | |
| def save_model( | |
| accelerator, | |
| args, | |
| epoch, | |
| model_without_ddp, | |
| optimizer, | |
| loss_scaler, | |
| step, | |
| fname=None, | |
| best_so_far=None, | |
| ): | |
| if accelerator.is_main_process: | |
| output_dir = Path(args.output_dir) | |
| if fname is None: | |
| fname = str(epoch) | |
| checkpoint_path = output_dir / ("checkpoint-%s.pth" % fname) | |
| to_save = { | |
| "model": model_without_ddp.state_dict(), | |
| "optimizer": optimizer.state_dict(), | |
| "scaler": loss_scaler.state_dict(), | |
| "args": args, | |
| "epoch": epoch, | |
| "step": step, | |
| } | |
| if best_so_far is not None: | |
| to_save["best_so_far"] = best_so_far | |
| print(f">> Saving model to {checkpoint_path} ...") | |
| save_on_master(accelerator, to_save, checkpoint_path) | |
| to_save = { | |
| "model": model_without_ddp.state_dict(), | |
| } | |
| checkpoint_path = output_dir / ("model.pth") | |
| save_on_master(accelerator, to_save, checkpoint_path) | |
| def load_model(args, model_without_ddp, optimizer, loss_scaler): | |
| args.start_epoch = 0 | |
| args.start_step = 0 | |
| best_so_far = None | |
| if args.resume is not None: | |
| if args.resume.startswith("https"): | |
| checkpoint = torch.hub.load_state_dict_from_url( | |
| args.resume, map_location="cpu", check_hash=True | |
| ) | |
| else: | |
| checkpoint = torch.load(args.resume, map_location="cuda", weights_only=False) | |
| printer.info("Resume checkpoint %s" % args.resume) | |
| state_dict = checkpoint["model"] | |
| new_state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} | |
| model_without_ddp.load_state_dict(new_state_dict, strict=True) | |
| args.start_epoch = checkpoint["epoch"] + 1 | |
| if "step" in checkpoint: | |
| args.start_step = checkpoint["step"] | |
| device = next(model_without_ddp.parameters()).device | |
| printer.info(f"Moving optimizer state to device: {device}") | |
| if "optimizer" in checkpoint: | |
| for state in checkpoint["optimizer"]["state"].values(): | |
| for k, v in state.items(): | |
| if isinstance(v, torch.Tensor): | |
| state[k] = v.to(device) | |
| optimizer.load_state_dict(checkpoint["optimizer"]) | |
| if "scaler" in checkpoint: | |
| loss_scaler.load_state_dict(checkpoint["scaler"]) | |
| if "best_so_far" in checkpoint: | |
| best_so_far = checkpoint["best_so_far"] | |
| printer.info(" & best_so_far={:g}".format(best_so_far)) | |
| else: | |
| printer.info("") | |
| printer.info("With optim & sched! start_epoch={:d}".format(args.start_epoch)) | |
| return best_so_far | |
| def all_reduce_mean(x, accelerator): | |
| """Use accelerator to all-reduce and compute mean.""" | |
| if accelerator.state.num_processes > 1: | |
| x_reduce = torch.tensor(x).cuda() | |
| accelerator.reduce(x_reduce, reduce_op="SUM") | |
| x_reduce /= accelerator.state.num_processes | |
| return x_reduce.item() | |
| else: | |
| return x | |
| def _replace(text, src, tgt, rm=""): | |
| """Advanced string replacement. | |
| Given a text: | |
| - replace all elements in src by the corresponding element in tgt | |
| - remove all elements in rm | |
| """ | |
| if len(tgt) == 1: | |
| tgt = tgt * len(src) | |
| assert len(src) == len(tgt), f"'{src}' and '{tgt}' should have the same len" | |
| for s, t in zip(src, tgt): | |
| text = text.replace(s, t) | |
| for c in rm: | |
| text = text.replace(c, "") | |
| return text | |
| def filename(obj): | |
| """transform a python obj or cmd into a proper filename. | |
| - \1 gets replaced by slash '/' | |
| - \2 gets replaced by comma ',' | |
| """ | |
| if not isinstance(obj, str): | |
| obj = repr(obj) | |
| obj = str(obj).replace("()", "") | |
| obj = _replace(obj, "_,(*/\1\2", "-__x%/,", rm=" )'\"") | |
| assert all(len(s) < 256 for s in obj.split(os.sep)), ( | |
| "filename too long (>256 characters):\n" + obj | |
| ) | |
| return obj | |
| def _get_num_layer_for_vit(var_name, enc_depth, dec_depth): | |
| if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"): | |
| return 0 | |
| elif var_name.startswith("patch_embed"): | |
| return 0 | |
| elif var_name.startswith("enc_blocks"): | |
| layer_id = int(var_name.split(".")[1]) | |
| return layer_id + 1 | |
| elif var_name.startswith("decoder_embed") or var_name.startswith( | |
| "enc_norm" | |
| ): # part of the last black | |
| return enc_depth | |
| elif var_name.startswith("dec_blocks"): | |
| layer_id = int(var_name.split(".")[1]) | |
| return enc_depth + layer_id + 1 | |
| elif var_name.startswith("dec_norm"): # part of the last block | |
| return enc_depth + dec_depth | |
| elif any(var_name.startswith(k) for k in ["head", "prediction_head"]): | |
| return enc_depth + dec_depth + 1 | |
| else: | |
| raise NotImplementedError(var_name) | |
| def get_parameter_groups( | |
| model, weight_decay, layer_decay=1.0, skip_list=(), no_lr_scale_list=[] | |
| ): | |
| parameter_group_names = {} | |
| parameter_group_vars = {} | |
| enc_depth, dec_depth = None, None | |
| # prepare layer decay values | |
| assert layer_decay == 1.0 or 0.0 < layer_decay < 1.0 | |
| if layer_decay < 1.0: | |
| enc_depth = model.enc_depth | |
| dec_depth = model.dec_depth if hasattr(model, "dec_blocks") else 0 | |
| num_layers = enc_depth + dec_depth | |
| layer_decay_values = list( | |
| layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2) | |
| ) | |
| for name, param in model.named_parameters(): | |
| if not param.requires_grad: | |
| continue # frozen weights | |
| # Assign weight decay values | |
| if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: | |
| if "enc_blocks" in name: | |
| group_name = "no_decay_enc_blocks" | |
| else: | |
| group_name = "no_decay" | |
| this_weight_decay = 0.0 | |
| else: | |
| if "enc_blocks" in name: | |
| group_name = "decay_enc_blocks" | |
| else: | |
| group_name = "decay" | |
| this_weight_decay = weight_decay | |
| # Assign layer ID for LR scaling | |
| if layer_decay < 1.0: | |
| skip_scale = False | |
| layer_id = _get_num_layer_for_vit(name, enc_depth, dec_depth) | |
| group_name = "layer_%d_%s" % (layer_id, group_name) | |
| if name in no_lr_scale_list: | |
| skip_scale = True | |
| group_name = f"{group_name}_no_lr_scale" | |
| else: | |
| layer_id = 0 | |
| skip_scale = True | |
| if group_name not in parameter_group_names: | |
| if not skip_scale: | |
| scale = layer_decay_values[layer_id] | |
| else: | |
| scale = 1.0 | |
| if "enc_blocks" in group_name: | |
| scale *= 1.0 | |
| parameter_group_names[group_name] = { | |
| "weight_decay": this_weight_decay, | |
| "params": [], | |
| "lr_scale": scale, | |
| } | |
| parameter_group_vars[group_name] = { | |
| "weight_decay": this_weight_decay, | |
| "params": [], | |
| "lr_scale": scale, | |
| } | |
| parameter_group_vars[group_name]["params"].append(param) | |
| parameter_group_names[group_name]["params"].append(name) | |
| printer.info("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
| return list(parameter_group_vars.values()) | |
| def adjust_learning_rate(optimizer, epoch, args): | |
| """Decay the learning rate with half-cycle cosine after warmup""" | |
| if epoch < args.warmup_epochs: | |
| lr = args.lr * epoch / args.warmup_epochs | |
| else: | |
| # lr = args.lr | |
| lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * ( | |
| 1.0 | |
| + math.cos( | |
| math.pi | |
| * (epoch - args.warmup_epochs) | |
| / (args.epochs - args.warmup_epochs) | |
| ) | |
| ) | |
| for param_group in optimizer.param_groups: | |
| if "lr_scale" in param_group: | |
| param_group["lr"] = lr * param_group["lr_scale"] | |
| else: | |
| param_group["lr"] = lr | |
| return lr | |