Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
| # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
| # | |
| # -------------------------------------------------------- | |
| # modified from DUSt3R | |
| import os | |
| import torch | |
| import numpy as np | |
| import PIL.Image | |
| from PIL.ImageOps import exif_transpose | |
| import torchvision.transforms as tvf | |
| os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" | |
| import cv2 # noqa | |
| try: | |
| from pillow_heif import register_heif_opener # noqa | |
| register_heif_opener() | |
| heif_support_enabled = True | |
| except ImportError: | |
| heif_support_enabled = False | |
| ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
| def img_to_arr(img): | |
| if isinstance(img, str): | |
| img = imread_cv2(img) | |
| return img | |
| def imread_cv2(path, options=cv2.IMREAD_COLOR): | |
| """Open an image or a depthmap with opencv-python.""" | |
| if path.endswith((".exr", "EXR")): | |
| options = cv2.IMREAD_ANYDEPTH | |
| img = cv2.imread(path, options) | |
| if img is None: | |
| raise IOError(f"Could not load image={path} with {options=}") | |
| if img.ndim == 3: | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| return img | |
| def rgb(ftensor, true_shape=None): | |
| if isinstance(ftensor, list): | |
| return [rgb(x, true_shape=true_shape) for x in ftensor] | |
| if isinstance(ftensor, torch.Tensor): | |
| ftensor = ftensor.detach().cpu().numpy() # H,W,3 | |
| if ftensor.ndim == 3 and ftensor.shape[0] == 3: | |
| ftensor = ftensor.transpose(1, 2, 0) | |
| elif ftensor.ndim == 4 and ftensor.shape[1] == 3: | |
| ftensor = ftensor.transpose(0, 2, 3, 1) | |
| if true_shape is not None: | |
| H, W = true_shape | |
| ftensor = ftensor[:H, :W] | |
| if ftensor.dtype == np.uint8: | |
| img = np.float32(ftensor) / 255 | |
| else: | |
| img = (ftensor * 0.5) + 0.5 | |
| return img.clip(min=0, max=1) | |
| def _resize_pil_image(img, long_edge_size): | |
| S = max(img.size) | |
| if S > long_edge_size: | |
| interp = PIL.Image.LANCZOS | |
| elif S <= long_edge_size: | |
| interp = PIL.Image.BICUBIC | |
| new_size = tuple(int(round(x * long_edge_size / S)) for x in img.size) | |
| return img.resize(new_size, interp) | |
| def load_images(folder_or_list, size, square_ok=False, verbose=True): | |
| """open and convert all images in a list or folder to proper input format for DUSt3R""" | |
| if isinstance(folder_or_list, str): | |
| if verbose: | |
| print(f">> Loading images from {folder_or_list}") | |
| root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) | |
| elif isinstance(folder_or_list, list): | |
| if verbose: | |
| print(f">> Loading a list of {len(folder_or_list)} images") | |
| root, folder_content = "", folder_or_list | |
| else: | |
| raise ValueError(f"bad {folder_or_list=} ({type(folder_or_list)})") | |
| supported_images_extensions = [".jpg", ".jpeg", ".png", ".bmp"] | |
| if heif_support_enabled: | |
| supported_images_extensions += [".heic", ".heif"] | |
| supported_images_extensions = tuple(supported_images_extensions) | |
| imgs = [] | |
| for path in folder_content: | |
| if not path.lower().endswith(supported_images_extensions): | |
| continue | |
| img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert("RGB") | |
| W1, H1 = img.size | |
| if size == 224: | |
| img = _resize_pil_image(img, round(size * max(W1 / H1, H1 / W1))) | |
| else: | |
| img = _resize_pil_image(img, size) | |
| W, H = img.size | |
| cx, cy = W // 2, H // 2 | |
| if size == 224: | |
| half = min(cx, cy) | |
| img = img.crop((cx - half, cy - half, cx + half, cy + half)) | |
| else: | |
| halfw, halfh = ((2 * cx) // 16) * 8, ((2 * cy) // 16) * 8 | |
| if not (square_ok) and W == H: | |
| halfh = 3 * halfw / 4 | |
| img = img.crop((cx - halfw, cy - halfh, cx + halfw, cy + halfh)) | |
| W2, H2 = img.size | |
| if verbose: | |
| print(f" - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}") | |
| imgs.append( | |
| dict( | |
| img=ImgNorm(img)[None], | |
| true_shape=np.int32([img.size[::-1]]), | |
| idx=len(imgs), | |
| instance=str(len(imgs)), | |
| ) | |
| ) | |
| assert imgs, "no images foud at " + root | |
| if verbose: | |
| print(f" (Found {len(imgs)} images)") | |
| return imgs | |
| def load_images_for_eval( | |
| folder_or_list, size, square_ok=False, verbose=True, crop=True | |
| ): | |
| """open and convert all images in a list or folder to proper input format for DUSt3R""" | |
| if isinstance(folder_or_list, str): | |
| if verbose: | |
| print(f">> Loading images from {folder_or_list}") | |
| root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) | |
| elif isinstance(folder_or_list, list): | |
| if verbose: | |
| print(f">> Loading a list of {len(folder_or_list)} images") | |
| root, folder_content = "", folder_or_list | |
| else: | |
| raise ValueError(f"bad {folder_or_list=} ({type(folder_or_list)})") | |
| supported_images_extensions = [".jpg", ".jpeg", ".png"] | |
| if heif_support_enabled: | |
| supported_images_extensions += [".heic", ".heif"] | |
| supported_images_extensions = tuple(supported_images_extensions) | |
| imgs = [] | |
| for path in folder_content: | |
| if not path.lower().endswith(supported_images_extensions): | |
| continue | |
| img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert("RGB") | |
| W1, H1 = img.size | |
| if size == 224: | |
| # resize short side to 224 (then crop) | |
| img = _resize_pil_image(img, round(size * max(W1 / H1, H1 / W1))) | |
| else: | |
| # resize long side to 512 | |
| img = _resize_pil_image(img, size) | |
| W, H = img.size | |
| cx, cy = W // 2, H // 2 | |
| if size == 224: | |
| half = min(cx, cy) | |
| if crop: | |
| img = img.crop((cx - half, cy - half, cx + half, cy + half)) | |
| else: # resize | |
| img = img.resize((2 * half, 2 * half), PIL.Image.LANCZOS) | |
| else: | |
| halfw, halfh = ((2 * cx) // 14) * 7, ((2 * cy) // 14) * 7 | |
| if not (square_ok) and W == H: | |
| halfh = 3 * halfw / 4 | |
| if crop: | |
| img = img.crop((cx - halfw, cy - halfh, cx + halfw, cy + halfh)) | |
| else: # resize | |
| img = img.resize((2 * halfw, 2 * halfh), PIL.Image.LANCZOS) | |
| W2, H2 = img.size | |
| if verbose: | |
| print(f" - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}") | |
| imgs.append( | |
| dict( | |
| img=ImgNorm(img)[None], | |
| true_shape=np.int32([img.size[::-1]]), | |
| idx=len(imgs), | |
| instance=str(len(imgs)), | |
| ) | |
| ) | |
| assert imgs, "no images foud at " + root | |
| if verbose: | |
| print(f" (Found {len(imgs)} images)") | |
| return imgs | |
| def load_images_512(folder_or_list, size, square_ok=False, verbose=True): | |
| """open and convert all images in a list or folder to proper input format for DUSt3R""" | |
| if isinstance(folder_or_list, str): | |
| if verbose: | |
| print(f">> Loading images from {folder_or_list}") | |
| root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) | |
| elif isinstance(folder_or_list, list): | |
| if verbose: | |
| print(f">> Loading a list of {len(folder_or_list)} images") | |
| root, folder_content = "", folder_or_list | |
| else: | |
| raise ValueError(f"bad {folder_or_list=} ({type(folder_or_list)})") | |
| supported_images_extensions = [".jpg", ".jpeg", ".png", ".bmp"] | |
| if heif_support_enabled: | |
| supported_images_extensions += [".heic", ".heif"] | |
| supported_images_extensions = tuple(supported_images_extensions) | |
| imgs = [] | |
| for path in folder_content: | |
| if not path.lower().endswith(supported_images_extensions): | |
| continue | |
| img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert("RGB") | |
| img = img.resize((512, 384)) | |
| W1, H1 = img.size | |
| if size == 224: | |
| img = _resize_pil_image(img, round(size * max(W1 / H1, H1 / W1))) | |
| else: | |
| img = _resize_pil_image(img, size) | |
| W, H = img.size | |
| cx, cy = W // 2, H // 2 | |
| if size == 224: | |
| half = min(cx, cy) | |
| img = img.crop((cx - half, cy - half, cx + half, cy + half)) | |
| else: | |
| halfw, halfh = ((2 * cx) // 16) * 8, ((2 * cy) // 16) * 8 | |
| if not (square_ok) and W == H: | |
| halfh = 3 * halfw / 4 | |
| img = img.crop((cx - halfw, cy - halfh, cx + halfw, cy + halfh)) | |
| W2, H2 = img.size | |
| if verbose: | |
| print(f" - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}") | |
| imgs.append( | |
| dict( | |
| img=ImgNorm(img)[None], | |
| true_shape=np.int32([img.size[::-1]]), | |
| idx=len(imgs), | |
| instance=str(len(imgs)), | |
| ) | |
| ) | |
| assert imgs, "no images foud at " + root | |
| if verbose: | |
| print(f" (Found {len(imgs)} images)") | |
| return imgs | |