Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import math | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from vggt.layers import Mlp | |
| from vggt.layers.block import Block | |
| from vggt.heads.head_act import activate_pose | |
| class CameraHead(nn.Module): | |
| """ | |
| CameraHead predicts camera parameters from token representations using iterative refinement. | |
| It applies a series of transformer blocks (the "trunk") to dedicated camera tokens. | |
| """ | |
| def __init__( | |
| self, | |
| dim_in: int = 2048, | |
| trunk_depth: int = 4, | |
| pose_encoding_type: str = "absT_quaR_FoV", | |
| num_heads: int = 16, | |
| mlp_ratio: int = 4, | |
| init_values: float = 0.01, | |
| trans_act: str = "linear", | |
| quat_act: str = "linear", | |
| fl_act: str = "relu", # Field of view activations: ensures FOV values are positive. | |
| ): | |
| super().__init__() | |
| if pose_encoding_type == "absT_quaR_FoV": | |
| self.target_dim = 9 | |
| else: | |
| raise ValueError(f"Unsupported camera encoding type: {pose_encoding_type}") | |
| self.trans_act = trans_act | |
| self.quat_act = quat_act | |
| self.fl_act = fl_act | |
| self.trunk_depth = trunk_depth | |
| # Build the trunk using a sequence of transformer blocks. | |
| self.trunk = nn.Sequential( | |
| *[ | |
| Block( | |
| dim=dim_in, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| init_values=init_values, | |
| ) | |
| for _ in range(trunk_depth) | |
| ] | |
| ) | |
| # Normalizations for camera token and trunk output. | |
| self.token_norm = nn.LayerNorm(dim_in) | |
| self.trunk_norm = nn.LayerNorm(dim_in) | |
| # Learnable empty camera pose token. | |
| self.empty_pose_tokens = nn.Parameter(torch.zeros(1, 1, self.target_dim)) | |
| self.embed_pose = nn.Linear(self.target_dim, dim_in) | |
| # Module for producing modulation parameters: shift, scale, and a gate. | |
| self.poseLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim_in, 3 * dim_in, bias=True)) | |
| # Adaptive layer normalization without affine parameters. | |
| self.adaln_norm = nn.LayerNorm(dim_in, elementwise_affine=False, eps=1e-6) | |
| self.pose_branch = Mlp( | |
| in_features=dim_in, | |
| hidden_features=dim_in // 2, | |
| out_features=self.target_dim, | |
| drop=0, | |
| ) | |
| def forward(self, aggregated_tokens_list: list, num_iterations: int = 4) -> list: | |
| """ | |
| Forward pass to predict camera parameters. | |
| Args: | |
| aggregated_tokens_list (list): List of token tensors from the network; | |
| the last tensor is used for prediction. | |
| num_iterations (int, optional): Number of iterative refinement steps. Defaults to 4. | |
| Returns: | |
| list: A list of predicted camera encodings (post-activation) from each iteration. | |
| """ | |
| # Use tokens from the last block for camera prediction. | |
| tokens = aggregated_tokens_list[-1] | |
| # Extract the camera tokens | |
| pose_tokens = tokens[:, :, 0] | |
| pose_tokens = self.token_norm(pose_tokens) | |
| pred_pose_enc_list = self.trunk_fn(pose_tokens, num_iterations) | |
| return pred_pose_enc_list | |
| def trunk_fn(self, pose_tokens: torch.Tensor, num_iterations: int) -> list: | |
| """ | |
| Iteratively refine camera pose predictions. | |
| Args: | |
| pose_tokens (torch.Tensor): Normalized camera tokens with shape [B, 1, C]. | |
| num_iterations (int): Number of refinement iterations. | |
| Returns: | |
| list: List of activated camera encodings from each iteration. | |
| """ | |
| B, S, C = pose_tokens.shape # S is expected to be 1. | |
| pred_pose_enc = None | |
| pred_pose_enc_list = [] | |
| for _ in range(num_iterations): | |
| # Use a learned empty pose for the first iteration. | |
| if pred_pose_enc is None: | |
| module_input = self.embed_pose(self.empty_pose_tokens.expand(B, S, -1)) | |
| else: | |
| # Detach the previous prediction to avoid backprop through time. | |
| pred_pose_enc = pred_pose_enc.detach() | |
| module_input = self.embed_pose(pred_pose_enc) | |
| # Generate modulation parameters and split them into shift, scale, and gate components. | |
| shift_msa, scale_msa, gate_msa = self.poseLN_modulation(module_input).chunk(3, dim=-1) | |
| # Adaptive layer normalization and modulation. | |
| pose_tokens_modulated = gate_msa * modulate(self.adaln_norm(pose_tokens), shift_msa, scale_msa) | |
| pose_tokens_modulated = pose_tokens_modulated + pose_tokens | |
| pose_tokens_modulated = self.trunk(pose_tokens_modulated) | |
| # Compute the delta update for the pose encoding. | |
| pred_pose_enc_delta = self.pose_branch(self.trunk_norm(pose_tokens_modulated)) | |
| if pred_pose_enc is None: | |
| pred_pose_enc = pred_pose_enc_delta | |
| else: | |
| pred_pose_enc = pred_pose_enc + pred_pose_enc_delta | |
| # Apply final activation functions for translation, quaternion, and field-of-view. | |
| activated_pose = activate_pose( | |
| pred_pose_enc, | |
| trans_act=self.trans_act, | |
| quat_act=self.quat_act, | |
| fl_act=self.fl_act, | |
| ) | |
| pred_pose_enc_list.append(activated_pose) | |
| return pred_pose_enc_list | |
| def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Modulate the input tensor using scaling and shifting parameters. | |
| """ | |
| # modified from https://github.com/facebookresearch/DiT/blob/796c29e532f47bba17c5b9c5eb39b9354b8b7c64/models.py#L19 | |
| return x * (1 + scale) + shift | |