Spaces:
Running
on
Zero
Running
on
Zero
fix output of inference
Browse files
app.py
CHANGED
|
@@ -85,11 +85,35 @@ def run_model(target_dir, model) -> dict:
|
|
| 85 |
|
| 86 |
with torch.no_grad():
|
| 87 |
with torch.cuda.amp.autocast(dtype=dtype):
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
# Convert pose encoding to extrinsic and intrinsic matrices
|
| 91 |
print("Converting pose encoding to extrinsic and intrinsic matrices...")
|
| 92 |
-
extrinsic, intrinsic = pose_encoding_to_extri_intri(predictions["
|
| 93 |
predictions["extrinsic"] = extrinsic
|
| 94 |
predictions["intrinsic"] = intrinsic
|
| 95 |
|
|
|
|
| 85 |
|
| 86 |
with torch.no_grad():
|
| 87 |
with torch.cuda.amp.autocast(dtype=dtype):
|
| 88 |
+
output = model.inference(frames)
|
| 89 |
+
|
| 90 |
+
predictions = {}
|
| 91 |
+
|
| 92 |
+
all_pts3d = []
|
| 93 |
+
all_conf = []
|
| 94 |
+
all_depth = []
|
| 95 |
+
all_depth_conf = []
|
| 96 |
+
all_camera_pose = []
|
| 97 |
+
|
| 98 |
+
for res in output.ress:
|
| 99 |
+
all_pts3d.append(res['pts3d_in_other_view'])
|
| 100 |
+
all_conf.append(res['conf'])
|
| 101 |
+
all_depth.append(res['depth'])
|
| 102 |
+
all_depth_conf.append(res['depth_conf'])
|
| 103 |
+
all_camera_pose.append(res['camera_pose'])
|
| 104 |
+
|
| 105 |
+
predictions["world_points"] = torch.stack(all_pts3d, dim=0) # (S, H, W, 3)
|
| 106 |
+
predictions["world_points_conf"] = torch.stack(all_conf, dim=0) # (S, H, W)
|
| 107 |
+
predictions["depth"] = torch.stack(all_depth, dim=0) # (S, H, W, 1)
|
| 108 |
+
predictions["depth_conf"] = torch.stack(all_depth_conf, dim=0) # (S, H, W)
|
| 109 |
+
predictions["pose_enc"] = torch.stack(all_camera_pose, dim=0) # (S, 9)
|
| 110 |
+
|
| 111 |
+
predictions["images"] = images.unsqueeze(0) # (1, S, 3, H, W)
|
| 112 |
+
|
| 113 |
|
| 114 |
# Convert pose encoding to extrinsic and intrinsic matrices
|
| 115 |
print("Converting pose encoding to extrinsic and intrinsic matrices...")
|
| 116 |
+
extrinsic, intrinsic = pose_encoding_to_extri_intri(predictions["camera_pose"], images.shape[-2:])
|
| 117 |
predictions["extrinsic"] = extrinsic
|
| 118 |
predictions["intrinsic"] = intrinsic
|
| 119 |
|