Spaces:
Running
on
Zero
Running
on
Zero
fix output of inference
Browse files
app.py
CHANGED
|
@@ -71,6 +71,9 @@ def run_model(target_dir, model) -> dict:
|
|
| 71 |
images = load_and_preprocess_images(image_names).to(device)
|
| 72 |
print(f"Preprocessed images shape: {images.shape}")
|
| 73 |
|
|
|
|
|
|
|
|
|
|
| 74 |
frames = []
|
| 75 |
for i in range(images.shape[0]):
|
| 76 |
image = images[i].unsqueeze(0)
|
|
@@ -86,9 +89,7 @@ def run_model(target_dir, model) -> dict:
|
|
| 86 |
with torch.no_grad():
|
| 87 |
with torch.cuda.amp.autocast(dtype=dtype):
|
| 88 |
output = model.inference(frames)
|
| 89 |
-
|
| 90 |
-
predictions = {}
|
| 91 |
-
|
| 92 |
all_pts3d = []
|
| 93 |
all_conf = []
|
| 94 |
all_depth = []
|
|
@@ -108,13 +109,11 @@ def run_model(target_dir, model) -> dict:
|
|
| 108 |
predictions["depth_conf"] = torch.stack(all_depth_conf, dim=0) # (S, H, W)
|
| 109 |
predictions["pose_enc"] = torch.stack(all_camera_pose, dim=0) # (S, 9)
|
| 110 |
|
| 111 |
-
predictions["
|
| 112 |
-
|
| 113 |
-
print("
|
| 114 |
-
print("
|
| 115 |
-
print("
|
| 116 |
-
print("Depth confidence shape:", predictions["depth_conf"].shape)
|
| 117 |
-
print("Pose encoding shape:", predictions["pose_enc"].shape)
|
| 118 |
|
| 119 |
# Convert pose encoding to extrinsic and intrinsic matrices
|
| 120 |
print("Converting pose encoding to extrinsic and intrinsic matrices...")
|
|
|
|
| 71 |
images = load_and_preprocess_images(image_names).to(device)
|
| 72 |
print(f"Preprocessed images shape: {images.shape}")
|
| 73 |
|
| 74 |
+
predictions = {}
|
| 75 |
+
predictions["images"] = images # (S, 3, H, W)
|
| 76 |
+
|
| 77 |
frames = []
|
| 78 |
for i in range(images.shape[0]):
|
| 79 |
image = images[i].unsqueeze(0)
|
|
|
|
| 89 |
with torch.no_grad():
|
| 90 |
with torch.cuda.amp.autocast(dtype=dtype):
|
| 91 |
output = model.inference(frames)
|
| 92 |
+
|
|
|
|
|
|
|
| 93 |
all_pts3d = []
|
| 94 |
all_conf = []
|
| 95 |
all_depth = []
|
|
|
|
| 109 |
predictions["depth_conf"] = torch.stack(all_depth_conf, dim=0) # (S, H, W)
|
| 110 |
predictions["pose_enc"] = torch.stack(all_camera_pose, dim=0) # (S, 9)
|
| 111 |
|
| 112 |
+
#print("World points shape:", predictions["world_points"].shape)
|
| 113 |
+
#print("World points confidence shape:", predictions["world_points_conf"].shape)
|
| 114 |
+
#print("Depth map shape:", predictions["depth"].shape)
|
| 115 |
+
#print("Depth confidence shape:", predictions["depth_conf"].shape)
|
| 116 |
+
#print("Pose encoding shape:", predictions["pose_enc"].shape)
|
|
|
|
|
|
|
| 117 |
|
| 118 |
# Convert pose encoding to extrinsic and intrinsic matrices
|
| 119 |
print("Converting pose encoding to extrinsic and intrinsic matrices...")
|