Update app.py
Browse files
app.py
CHANGED
|
@@ -14,6 +14,55 @@ from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT)
|
|
| 14 |
from langchain import PromptTemplate
|
| 15 |
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def create_db_connection():
|
| 18 |
DB_FILE = "./questionset.db"
|
| 19 |
connection = sqlite3.connect(DB_FILE,check_same_thread=False)
|
|
@@ -162,53 +211,6 @@ def add_questionset(data, document_type, tag_for_questionset):
|
|
| 162 |
connection.commit()
|
| 163 |
connection.close()
|
| 164 |
|
| 165 |
-
|
| 166 |
-
def load_pdf_and_generate_embeddings(pdf_doc, relevant_pages):
|
| 167 |
-
os.environ['OPENAI_API_KEY'] = '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'
|
| 168 |
-
#OCR Conversion - skips conversion of pages that already contain text
|
| 169 |
-
pdf_doc = ocr_converter(pdf_doc)
|
| 170 |
-
#Load the pdf file
|
| 171 |
-
loader = OnlinePDFLoader(pdf_doc)
|
| 172 |
-
pages = loader.load_and_split()
|
| 173 |
-
print('pages loaded:', len(pages))
|
| 174 |
-
|
| 175 |
-
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
|
| 176 |
-
embeddings = OpenAIEmbeddings()
|
| 177 |
-
|
| 178 |
-
pages_to_be_loaded =[]
|
| 179 |
-
|
| 180 |
-
if relevant_pages:
|
| 181 |
-
page_numbers = relevant_pages.split(",")
|
| 182 |
-
if len(page_numbers) != 0:
|
| 183 |
-
for page_number in page_numbers:
|
| 184 |
-
if page_number.isdigit():
|
| 185 |
-
pageIndex = int(page_number)-1
|
| 186 |
-
if pageIndex >=0 and pageIndex <len(pages):
|
| 187 |
-
pages_to_be_loaded.append(pages[pageIndex])
|
| 188 |
-
|
| 189 |
-
#In the scenario where none of the page numbers supplied exist in the PDF, we will revert to using the entire PDF.
|
| 190 |
-
if len(pages_to_be_loaded) ==0:
|
| 191 |
-
pages_to_be_loaded = pages.copy()
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case) and the embeddings instance
|
| 195 |
-
vectordb = Chroma.from_documents(pages_to_be_loaded, embedding=embeddings)
|
| 196 |
-
|
| 197 |
-
#Finally, we create the bot using the RetrievalQA class
|
| 198 |
-
global pdf_qa
|
| 199 |
-
|
| 200 |
-
prompt_template = """Use the following pieces of context to answer the question at the end. If you do not know the answer, just return N/A. If you encounter a date, return it in mm/dd/yyyy format.
|
| 201 |
-
|
| 202 |
-
{context}
|
| 203 |
-
|
| 204 |
-
Question: {question}
|
| 205 |
-
Return just the answer. Provide the answer in the JSON format and extract the key from the question :"""
|
| 206 |
-
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
| 207 |
-
chain_type_kwargs = {"prompt": PROMPT}
|
| 208 |
-
pdf_qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0, model_name="gpt-4"),chain_type="stuff", retriever=vectordb.as_retriever(search_kwargs={"k": 5}), chain_type_kwargs=chain_type_kwargs, return_source_documents=False)
|
| 209 |
-
|
| 210 |
-
return "Ready"
|
| 211 |
-
|
| 212 |
def load_csv_and_store_questionset_into_sqlite(csv_file, document_type, tag_for_questionset):
|
| 213 |
print('document type is:',document_type)
|
| 214 |
print('tag_for_questionset is:',tag_for_questionset)
|
|
@@ -270,7 +272,7 @@ title = """
|
|
| 270 |
<h1>Chatbot for PDFs - GPT-4</h1>
|
| 271 |
<p style="text-align: center;">Upload a .PDF, click the "Upload PDF and generate embeddings" button, <br />
|
| 272 |
Wait for the Status to show Ready. You can chose to get answers to the pre-defined question set OR ask your own question <br />
|
| 273 |
-
The app is built on GPT-4 and leverages PromptTemplate</p>
|
| 274 |
</div>
|
| 275 |
"""
|
| 276 |
|
|
@@ -280,6 +282,7 @@ with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo:
|
|
| 280 |
|
| 281 |
with gr.Tab("Chatbot"):
|
| 282 |
with gr.Column():
|
|
|
|
| 283 |
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file')
|
| 284 |
relevant_pages = gr.Textbox(label="*Optional - List comma separated page numbers to load or leave this field blank to use the entire PDF")
|
| 285 |
|
|
|
|
| 14 |
from langchain import PromptTemplate
|
| 15 |
|
| 16 |
|
| 17 |
+
def load_pdf_and_generate_embeddings(pdf_doc, open_ai_key, relevant_pages):
|
| 18 |
+
if open_ai_key is not None:
|
| 19 |
+
os.environ['OPENAI_API_KEY'] = open_ai_key
|
| 20 |
+
#OCR Conversion - skips conversion of pages that already contain text
|
| 21 |
+
pdf_doc = ocr_converter(pdf_doc)
|
| 22 |
+
#Load the pdf file
|
| 23 |
+
loader = OnlinePDFLoader(pdf_doc)
|
| 24 |
+
pages = loader.load_and_split()
|
| 25 |
+
print('pages loaded:', len(pages))
|
| 26 |
+
|
| 27 |
+
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
|
| 28 |
+
embeddings = OpenAIEmbeddings()
|
| 29 |
+
|
| 30 |
+
pages_to_be_loaded =[]
|
| 31 |
+
|
| 32 |
+
if relevant_pages:
|
| 33 |
+
page_numbers = relevant_pages.split(",")
|
| 34 |
+
if len(page_numbers) != 0:
|
| 35 |
+
for page_number in page_numbers:
|
| 36 |
+
if page_number.isdigit():
|
| 37 |
+
pageIndex = int(page_number)-1
|
| 38 |
+
if pageIndex >=0 and pageIndex <len(pages):
|
| 39 |
+
pages_to_be_loaded.append(pages[pageIndex])
|
| 40 |
+
|
| 41 |
+
#In the scenario where none of the page numbers supplied exist in the PDF, we will revert to using the entire PDF.
|
| 42 |
+
if len(pages_to_be_loaded) ==0:
|
| 43 |
+
pages_to_be_loaded = pages.copy()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case) and the embeddings instance
|
| 47 |
+
vectordb = Chroma.from_documents(pages_to_be_loaded, embedding=embeddings)
|
| 48 |
+
|
| 49 |
+
#Finally, we create the bot using the RetrievalQA class
|
| 50 |
+
global pdf_qa
|
| 51 |
+
|
| 52 |
+
prompt_template = """Use the following pieces of context to answer the question at the end. If you do not know the answer, just return N/A. If you encounter a date, return it in mm/dd/yyyy format.
|
| 53 |
+
|
| 54 |
+
{context}
|
| 55 |
+
|
| 56 |
+
Question: {question}
|
| 57 |
+
Return just the answer. Provide the answer in the JSON format and extract the key from the question :"""
|
| 58 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
| 59 |
+
chain_type_kwargs = {"prompt": PROMPT}
|
| 60 |
+
pdf_qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0, model_name="gpt-4"),chain_type="stuff", retriever=vectordb.as_retriever(search_kwargs={"k": 5}), chain_type_kwargs=chain_type_kwargs, return_source_documents=False)
|
| 61 |
+
|
| 62 |
+
return "Ready"
|
| 63 |
+
else:
|
| 64 |
+
return "Please provide an OpenAI gpt-4 API key"
|
| 65 |
+
|
| 66 |
def create_db_connection():
|
| 67 |
DB_FILE = "./questionset.db"
|
| 68 |
connection = sqlite3.connect(DB_FILE,check_same_thread=False)
|
|
|
|
| 211 |
connection.commit()
|
| 212 |
connection.close()
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
def load_csv_and_store_questionset_into_sqlite(csv_file, document_type, tag_for_questionset):
|
| 215 |
print('document type is:',document_type)
|
| 216 |
print('tag_for_questionset is:',tag_for_questionset)
|
|
|
|
| 272 |
<h1>Chatbot for PDFs - GPT-4</h1>
|
| 273 |
<p style="text-align: center;">Upload a .PDF, click the "Upload PDF and generate embeddings" button, <br />
|
| 274 |
Wait for the Status to show Ready. You can chose to get answers to the pre-defined question set OR ask your own question <br />
|
| 275 |
+
The app is built on GPT-4 and leverages the magic of PromptTemplate</p>
|
| 276 |
</div>
|
| 277 |
"""
|
| 278 |
|
|
|
|
| 282 |
|
| 283 |
with gr.Tab("Chatbot"):
|
| 284 |
with gr.Column():
|
| 285 |
+
openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password")
|
| 286 |
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file')
|
| 287 |
relevant_pages = gr.Textbox(label="*Optional - List comma separated page numbers to load or leave this field blank to use the entire PDF")
|
| 288 |
|