Spaces:
Runtime error
Runtime error
| from typing import Union | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import torch.profiler | |
| from modules import refiner | |
| from modules.api.impl.handler.SSMLHandler import SSMLHandler | |
| from modules.api.impl.handler.TTSHandler import TTSHandler | |
| from modules.api.impl.model.audio_model import AdjustConfig | |
| from modules.api.impl.model.chattts_model import ChatTTSConfig, InferConfig | |
| from modules.api.impl.model.enhancer_model import EnhancerConfig | |
| from modules.api.utils import calc_spk_style | |
| from modules.data import styles_mgr | |
| from modules.Enhancer.ResembleEnhance import apply_audio_enhance as _apply_audio_enhance | |
| from modules.normalization import text_normalize | |
| from modules.SentenceSplitter import SentenceSplitter | |
| from modules.speaker import Speaker, speaker_mgr | |
| from modules.ssml_parser.SSMLParser import SSMLBreak, SSMLSegment, create_ssml_parser | |
| from modules.utils import audio | |
| from modules.utils.hf import spaces | |
| from modules.webui import webui_config | |
| def get_speakers(): | |
| return speaker_mgr.list_speakers() | |
| def get_speaker_names() -> tuple[list[Speaker], list[str]]: | |
| speakers = get_speakers() | |
| def get_speaker_show_name(spk): | |
| if spk.gender == "*" or spk.gender == "": | |
| return spk.name | |
| return f"{spk.gender} : {spk.name}" | |
| speaker_names = [get_speaker_show_name(speaker) for speaker in speakers] | |
| speaker_names.sort(key=lambda x: x.startswith("*") and "-1" or x) | |
| return speakers, speaker_names | |
| def get_styles(): | |
| return styles_mgr.list_items() | |
| def load_spk_info(file): | |
| if file is None: | |
| return "empty" | |
| try: | |
| spk: Speaker = Speaker.from_file(file) | |
| infos = spk.to_json() | |
| return f""" | |
| - name: {infos.name} | |
| - gender: {infos.gender} | |
| - describe: {infos.describe} | |
| """.strip() | |
| except: | |
| return "load failed" | |
| def segments_length_limit( | |
| segments: list[Union[SSMLBreak, SSMLSegment]], total_max: int | |
| ) -> list[Union[SSMLBreak, SSMLSegment]]: | |
| ret_segments = [] | |
| total_len = 0 | |
| for seg in segments: | |
| if isinstance(seg, SSMLBreak): | |
| ret_segments.append(seg) | |
| continue | |
| total_len += len(seg["text"]) | |
| if total_len > total_max: | |
| break | |
| ret_segments.append(seg) | |
| return ret_segments | |
| def apply_audio_enhance(audio_data, sr, enable_denoise, enable_enhance): | |
| return _apply_audio_enhance(audio_data, sr, enable_denoise, enable_enhance) | |
| def synthesize_ssml( | |
| ssml: str, | |
| batch_size=4, | |
| enable_enhance=False, | |
| enable_denoise=False, | |
| eos: str = "[uv_break]", | |
| spliter_thr: int = 100, | |
| pitch: float = 0, | |
| speed_rate: float = 1, | |
| volume_gain_db: float = 0, | |
| normalize: bool = True, | |
| headroom: float = 1, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| try: | |
| batch_size = int(batch_size) | |
| except Exception: | |
| batch_size = 8 | |
| ssml = ssml.strip() | |
| if ssml == "": | |
| raise gr.Error("SSML is empty, please input some SSML") | |
| parser = create_ssml_parser() | |
| segments = parser.parse(ssml) | |
| max_len = webui_config.ssml_max | |
| segments = segments_length_limit(segments, max_len) | |
| if len(segments) == 0: | |
| raise gr.Error("No valid segments in SSML") | |
| infer_config = InferConfig( | |
| batch_size=batch_size, | |
| spliter_threshold=spliter_thr, | |
| eos=eos, | |
| # NOTE: SSML not support `infer_seed` contorl | |
| # seed=42, | |
| ) | |
| adjust_config = AdjustConfig( | |
| pitch=pitch, | |
| speed_rate=speed_rate, | |
| volume_gain_db=volume_gain_db, | |
| normalize=normalize, | |
| headroom=headroom, | |
| ) | |
| enhancer_config = EnhancerConfig( | |
| enabled=enable_denoise or enable_enhance or False, | |
| lambd=0.9 if enable_denoise else 0.1, | |
| ) | |
| handler = SSMLHandler( | |
| ssml_content=ssml, | |
| infer_config=infer_config, | |
| adjust_config=adjust_config, | |
| enhancer_config=enhancer_config, | |
| ) | |
| audio_data, sr = handler.enqueue() | |
| # NOTE: 这里必须要加,不然 gradio 没法解析成 mp3 格式 | |
| audio_data = audio.audio_to_int16(audio_data) | |
| return sr, audio_data | |
| # @torch.inference_mode() | |
| def tts_generate( | |
| text, | |
| temperature=0.3, | |
| top_p=0.7, | |
| top_k=20, | |
| spk=-1, | |
| infer_seed=-1, | |
| use_decoder=True, | |
| prompt1="", | |
| prompt2="", | |
| prefix="", | |
| style="", | |
| disable_normalize=False, | |
| batch_size=4, | |
| enable_enhance=False, | |
| enable_denoise=False, | |
| spk_file=None, | |
| spliter_thr: int = 100, | |
| eos: str = "[uv_break]", | |
| pitch: float = 0, | |
| speed_rate: float = 1, | |
| volume_gain_db: float = 0, | |
| normalize: bool = True, | |
| headroom: float = 1, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| try: | |
| batch_size = int(batch_size) | |
| except Exception: | |
| batch_size = 4 | |
| max_len = webui_config.tts_max | |
| text = text.strip()[0:max_len] | |
| if text == "": | |
| raise gr.Error("Text is empty, please input some text") | |
| if style == "*auto": | |
| style = "" | |
| if isinstance(top_k, float): | |
| top_k = int(top_k) | |
| params = calc_spk_style(spk=spk, style=style) | |
| spk = params.get("spk", spk) | |
| infer_seed = infer_seed or params.get("seed", infer_seed) | |
| temperature = temperature or params.get("temperature", temperature) | |
| prefix = prefix or params.get("prefix", prefix) | |
| prompt1 = prompt1 or params.get("prompt1", "") | |
| prompt2 = prompt2 or params.get("prompt2", "") | |
| infer_seed = np.clip(infer_seed, -1, 2**32 - 1, out=None, dtype=np.float64) | |
| infer_seed = int(infer_seed) | |
| if isinstance(spk, int): | |
| spk = Speaker.from_seed(spk) | |
| if spk_file: | |
| try: | |
| spk: Speaker = Speaker.from_file(spk_file) | |
| except Exception: | |
| raise gr.Error("Failed to load speaker file") | |
| if not isinstance(spk.emb, torch.Tensor): | |
| raise gr.Error("Speaker file is not supported") | |
| tts_config = ChatTTSConfig( | |
| style=style, | |
| temperature=temperature, | |
| top_k=top_k, | |
| top_p=top_p, | |
| prefix=prefix, | |
| prompt1=prompt1, | |
| prompt2=prompt2, | |
| ) | |
| infer_config = InferConfig( | |
| batch_size=batch_size, | |
| spliter_threshold=spliter_thr, | |
| eos=eos, | |
| seed=infer_seed, | |
| ) | |
| adjust_config = AdjustConfig( | |
| pitch=pitch, | |
| speed_rate=speed_rate, | |
| volume_gain_db=volume_gain_db, | |
| normalize=normalize, | |
| headroom=headroom, | |
| ) | |
| enhancer_config = EnhancerConfig( | |
| enabled=enable_denoise or enable_enhance or False, | |
| lambd=0.9 if enable_denoise else 0.1, | |
| ) | |
| handler = TTSHandler( | |
| text_content=text, | |
| spk=spk, | |
| tts_config=tts_config, | |
| infer_config=infer_config, | |
| adjust_config=adjust_config, | |
| enhancer_config=enhancer_config, | |
| ) | |
| audio_data, sample_rate = handler.enqueue() | |
| # NOTE: 这里必须要加,不然 gradio 没法解析成 mp3 格式 | |
| audio_data = audio.audio_to_int16(audio_data) | |
| return sample_rate, audio_data | |
| def refine_text( | |
| text: str, | |
| prompt: str, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| text = text_normalize(text) | |
| return refiner.refine_text(text, prompt=prompt) | |
| def split_long_text(long_text_input): | |
| spliter = SentenceSplitter(webui_config.spliter_threshold) | |
| sentences = spliter.parse(long_text_input) | |
| sentences = [text_normalize(s) for s in sentences] | |
| data = [] | |
| for i, text in enumerate(sentences): | |
| data.append([i, text, len(text)]) | |
| return data | |