Spaces:
Runtime error
Runtime error
| from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| from prompt import smoke_detection_prompt | |
| import gradio as gr | |
| import spaces | |
| model_name = "leon-se/ForestFireVLM-7B" | |
| model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| model_name, torch_dtype="auto", device_map="auto" | |
| ) | |
| processor = AutoProcessor.from_pretrained(model_name) | |
| def generate(image): | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image, | |
| }, | |
| {"type": "text", "text": smoke_detection_prompt}, | |
| ], | |
| } | |
| ] | |
| # Preparation for inference | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cuda") | |
| # Inference: Generation of the output | |
| generated_ids = model.generate(**inputs, max_new_tokens=300, do_sample=False) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return output_text[0] | |
| inputs = gr.Image(type="pil", label="Input Image") | |
| outputs = gr.JSON(label="Output") | |
| title = "ForestFireVLM" | |
| description = "This is ForestFireVLM-7B, a finetune of Qwen2.5-VL-7B-Instruct. Our demo shows how Vision-Language Models can give detailled and structured captions for forest fires from UAV perspectives." | |
| demo = gr.Interface(fn=generate, inputs=inputs, outputs=outputs, deep_link=False, title=title, description=description) | |
| demo.launch() | |