Spaces:
Running
Running
fix load
Browse files
app.py
CHANGED
|
@@ -51,6 +51,10 @@ function setDataFrameReadonly() {
|
|
| 51 |
"""
|
| 52 |
text_functions_df = pd.read_csv("text_functions.tsv", delimiter="\t")
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def prepare_function(func: str, placeholder: str, column_name: str) -> str:
|
| 55 |
if "(" in func:
|
| 56 |
prepared_func = func.split("(")
|
|
@@ -75,63 +79,94 @@ with gr.Blocks(css=css, js=js) as demo:
|
|
| 75 |
transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(transform_dropdowns))]
|
| 76 |
dataframe = gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns), interactive=True, elem_classes="readonly-dataframe")
|
| 77 |
|
| 78 |
-
|
| 79 |
-
def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None):
|
| 80 |
-
api = HfApi(token=oauth_token.token if oauth_token else None)
|
| 81 |
-
datasets = list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"]))
|
| 82 |
-
if oauth_token and (user := api.whoami().get("user")):
|
| 83 |
-
datasets += list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user))
|
| 84 |
-
dataset = request.query_params.get("dataset") or datasets[0].id
|
| 85 |
-
return {dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset)}
|
| 86 |
-
|
| 87 |
-
@dataset_dropdown.change(inputs=dataset_dropdown, outputs=loading_codes_json)
|
| 88 |
-
def _fetch_read_parquet_loading(dataset: str):
|
| 89 |
if dataset and "/" not in dataset.strip().strip("/"):
|
| 90 |
return []
|
| 91 |
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
@loading_codes_json.change(inputs=loading_codes_json, outputs=[subset_dropdown, split_dropdown])
|
| 95 |
-
def _show_subset_dropdown(loading_codes: list[dict]):
|
| 96 |
subsets = [loading_code["config_name"] for loading_code in loading_codes]
|
| 97 |
subset = (subsets or [""])[0]
|
| 98 |
-
|
| 99 |
-
split = (splits or [""])[0]
|
| 100 |
-
return gr.Dropdown(subsets, value=subset, visible=len(subsets) > 1), gr.Dropdown(splits, value=split, visible=len(splits) > 1)
|
| 101 |
|
| 102 |
-
|
| 103 |
-
def _show_split_dropdown(loading_codes: list[dict], subset: str):
|
| 104 |
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
|
| 105 |
split = (splits or [""])[0]
|
| 106 |
-
return
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
@lru_cache(maxsize=3)
|
| 110 |
-
def _set_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
|
| 111 |
pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
|
| 112 |
if dataset and subset and split and pattern:
|
| 113 |
-
df =
|
| 114 |
-
|
| 115 |
else:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
new_transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in input_df.columns]
|
| 121 |
-
new_transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))]
|
| 122 |
-
return new_transform_dropdowns
|
| 123 |
|
| 124 |
-
def
|
| 125 |
try:
|
| 126 |
-
|
| 127 |
-
# return input_df
|
| 128 |
-
return duckdb.sql(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;")
|
| 129 |
except Exception as e:
|
| 130 |
-
|
|
|
|
| 131 |
|
| 132 |
for column_index, transform_dropdown in enumerate(transform_dropdowns):
|
| 133 |
-
transform_dropdown.
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
|
| 137 |
if __name__ == "__main__":
|
|
|
|
| 51 |
"""
|
| 52 |
text_functions_df = pd.read_csv("text_functions.tsv", delimiter="\t")
|
| 53 |
|
| 54 |
+
@lru_cache(maxsize=3)
|
| 55 |
+
def duckdb_sql(query: str) -> duckdb.DuckDBPyRelation:
|
| 56 |
+
return duckdb.sql(query)
|
| 57 |
+
|
| 58 |
def prepare_function(func: str, placeholder: str, column_name: str) -> str:
|
| 59 |
if "(" in func:
|
| 60 |
prepared_func = func.split("(")
|
|
|
|
| 79 |
transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(transform_dropdowns))]
|
| 80 |
dataframe = gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns), interactive=True, elem_classes="readonly-dataframe")
|
| 81 |
|
| 82 |
+
def show_subset_dropdown(dataset: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
if dataset and "/" not in dataset.strip().strip("/"):
|
| 84 |
return []
|
| 85 |
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
|
| 86 |
+
loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_PARQUET_FUNCTIONS] or [[]])[0] or []
|
|
|
|
|
|
|
|
|
|
| 87 |
subsets = [loading_code["config_name"] for loading_code in loading_codes]
|
| 88 |
subset = (subsets or [""])[0]
|
| 89 |
+
return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
def show_split_dropdown(subset: str, loading_codes: list[dict]):
|
|
|
|
| 92 |
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
|
| 93 |
split = (splits or [""])[0]
|
| 94 |
+
return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset))
|
| 95 |
+
|
| 96 |
+
def show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
|
|
|
|
|
|
|
| 97 |
pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
|
| 98 |
if dataset and subset and split and pattern:
|
| 99 |
+
df = duckdb_sql(f"SELECT * FROM 'hf://datasets/{dataset}/{pattern}' LIMIT 10").df()
|
| 100 |
+
input_df = df
|
| 101 |
else:
|
| 102 |
+
input_df = EMPTY_DF
|
| 103 |
+
new_transform_dropdowns = [dict(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in input_df.columns]
|
| 104 |
+
new_transform_dropdowns += [dict(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))]
|
| 105 |
+
return [dict(value=df, column_widths=[f"{1/len(df.columns):.0%}"] * len(df.columns))] + new_transform_dropdowns
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
def set_dataframe(input_df: pd.DataFrame, *transforms: tuple[str], column_index: int):
|
| 108 |
try:
|
| 109 |
+
return duckdb.sql(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;").df()
|
|
|
|
|
|
|
| 110 |
except Exception as e:
|
| 111 |
+
gr.Error(f"{type(e).__name__}: {e}")
|
| 112 |
+
return input_df
|
| 113 |
|
| 114 |
for column_index, transform_dropdown in enumerate(transform_dropdowns):
|
| 115 |
+
transform_dropdown.select(partial(set_dataframe, column_index=column_index), inputs=[input_dataframe] + transform_dropdowns, outputs=dataframe)
|
| 116 |
|
| 117 |
+
@demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
|
| 118 |
+
def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None):
|
| 119 |
+
api = HfApi(token=oauth_token.token if oauth_token else None)
|
| 120 |
+
datasets = list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"]))
|
| 121 |
+
if oauth_token and (user := api.whoami().get("name")):
|
| 122 |
+
datasets += list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user))
|
| 123 |
+
dataset = request.query_params.get("dataset") or datasets[0].id
|
| 124 |
+
subsets, loading_codes = show_subset_dropdown(dataset)
|
| 125 |
+
splits = show_split_dropdown(subsets["value"], loading_codes)
|
| 126 |
+
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
|
| 127 |
+
return {
|
| 128 |
+
dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset),
|
| 129 |
+
loading_codes_json: loading_codes,
|
| 130 |
+
subset_dropdown: gr.Dropdown(**subsets),
|
| 131 |
+
split_dropdown: gr.Dropdown(**splits),
|
| 132 |
+
input_dataframe: gr.DataFrame(**input_df),
|
| 133 |
+
dataframe: gr.DataFrame(**input_df),
|
| 134 |
+
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
@dataset_dropdown.select(inputs=dataset_dropdown, outputs=[loading_codes_json, subset_dropdown, split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
|
| 138 |
+
def _show_subset_dropdown(dataset: str):
|
| 139 |
+
subsets, loading_codes = show_subset_dropdown(dataset)
|
| 140 |
+
splits = show_split_dropdown(subsets["value"], loading_codes)
|
| 141 |
+
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
|
| 142 |
+
return {
|
| 143 |
+
loading_codes_json: loading_codes,
|
| 144 |
+
subset_dropdown: gr.Dropdown(**subsets),
|
| 145 |
+
split_dropdown: gr.Dropdown(**splits),
|
| 146 |
+
input_dataframe: gr.DataFrame(**input_df),
|
| 147 |
+
dataframe: gr.DataFrame(**input_df),
|
| 148 |
+
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
@subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
|
| 152 |
+
def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]):
|
| 153 |
+
splits = show_split_dropdown(subset, loading_codes)
|
| 154 |
+
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subset, splits["value"], loading_codes)
|
| 155 |
+
return {
|
| 156 |
+
split_dropdown: gr.Dropdown(**splits),
|
| 157 |
+
input_dataframe: gr.DataFrame(**input_df),
|
| 158 |
+
dataframe: gr.DataFrame(**input_df),
|
| 159 |
+
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
@split_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json], outputs=[input_dataframe, dataframe] + transform_dropdowns)
|
| 163 |
+
def _show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
|
| 164 |
+
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subset, split, loading_codes)
|
| 165 |
+
return {
|
| 166 |
+
input_dataframe: gr.DataFrame(**input_df),
|
| 167 |
+
dataframe: gr.DataFrame(**input_df),
|
| 168 |
+
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
|
| 169 |
+
}
|
| 170 |
|
| 171 |
|
| 172 |
if __name__ == "__main__":
|