Spaces:
Running
on
Zero
Running
on
Zero
| import time | |
| from urllib.parse import urlparse, parse_qs | |
| import gradio as gr | |
| import io | |
| import pandas as pd | |
| import spaces | |
| from generate import stream_jsonl_file | |
| MAX_SIZE = 20 | |
| DEFAULT_SEED = 42 | |
| DEFAULT_SIZE = 3 | |
| def stream_output(filename: str): | |
| parsed_filename = urlparse(filename) | |
| filename = parsed_filename.path | |
| params = parse_qs(parsed_filename.query) | |
| prompt = params["prompt"][0] if "prompt" in params else "" | |
| columns = [column.strip() for column in params["columns"][0].split(",") if column.strip()] if "columns" in params else [] | |
| size = int(params["size"][0]) if "size" in params else DEFAULT_SIZE | |
| seed = int(params["seed"][0]) if "seed" in params else DEFAULT_SEED | |
| if size > MAX_SIZE: | |
| yield None, None, "Error: Maximum size is 20" | |
| content = "" | |
| start_time = time.time() | |
| for i, chunk in enumerate(stream_jsonl_file( | |
| filename=filename, | |
| prompt=prompt, | |
| columns=columns, | |
| seed=seed, | |
| size=size, | |
| )): | |
| content += chunk | |
| df = pd.read_json(io.StringIO(content), lines=True) | |
| state_msg = ( | |
| f"β Done generating {size} samples in {time.time() - start_time:.2f}s" | |
| if i + 1 == size else | |
| f"βοΈ Generating... [{i + 1}/{size}]" | |
| ) | |
| yield df, "```json\n" + content + "\n```", state_msg | |
| title = "LLM DataGen" | |
| description = "Generate and stream synthetic dataset files in JSON Lines format" | |
| examples = [ | |
| "movies_data.jsonl", | |
| "dungeon_and_dragon_characters.jsonl" | |
| "bad_amazon_reviews_on_defunct_products_that_people_hate.jsonl", | |
| "common_first_names.jsonl?columns=first_name,popularity&size=10", | |
| ] | |
| with gr.Blocks() as demo: | |
| gr.Markdown(f"# {title}") | |
| gr.Markdown(description) | |
| filename_comp = gr.Textbox(examples[0], placeholder=examples[0]) | |
| gr.Examples(examples, filename_comp) | |
| generate_button = gr.Button("Generate dataset") | |
| state_msg_comp = gr.Markdown("π₯ Ready to generate") | |
| with gr.Tab("Dataset"): | |
| dataframe_comp = gr.DataFrame() | |
| with gr.Tab("File content"): | |
| file_content_comp = gr.Markdown() | |
| generate_button.click(stream_output, filename_comp, [dataframe_comp, file_content_comp, state_msg_comp]) | |
| demo.launch() | |