Spaces:
Running
Running
| from PIL import Image | |
| from vllm import LLM, SamplingParams | |
| model_name = "starvector/starvector-1b-im2svg" | |
| # model_name = "starvector/starvector-8b-im2svg" | |
| sampling_params = SamplingParams( | |
| temperature=0.8, | |
| top_p=0.95, | |
| max_tokens=7900, | |
| n=1, | |
| frequency_penalty=0.0, | |
| repetition_penalty=1.0, | |
| top_k=-1, | |
| min_p=0.0, | |
| ) | |
| llm = LLM(model=model_name, trust_remote_code=True, max_model_len=8192) | |
| prompt_start = "<image-start>" | |
| images = [Image.open('assets/examples/sample-18.png')] | |
| model_inputs_vllm = [] | |
| for i in range(len(images)): | |
| model_inputs_vllm.append({ | |
| "prompt": prompt_start, | |
| "multi_modal_data": {"image": images[i]} | |
| }) | |
| outputs = llm.generate(model_inputs_vllm, | |
| sampling_params=sampling_params, | |
| use_tqdm=False) | |
| completions = [] | |
| for i in range(len(outputs)): | |
| for j in range(len(outputs[i].outputs)): | |
| completions.append(outputs[i].outputs[j].text) | |
| print(completions) | |