Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
from pathlib import Path
|
| 3 |
import requests
|
| 4 |
-
import shutil
|
| 5 |
import torch
|
| 6 |
from threading import Event, Thread
|
| 7 |
from transformers import AutoConfig, AutoTokenizer
|
|
@@ -17,16 +16,18 @@ from llm_config import SUPPORTED_LLM_MODELS
|
|
| 17 |
# Initialize model language options
|
| 18 |
model_languages = list(SUPPORTED_LLM_MODELS)
|
| 19 |
|
| 20 |
-
# Gradio
|
| 21 |
with gr.Blocks() as iface:
|
|
|
|
| 22 |
model_language = gr.Dropdown(
|
| 23 |
choices=model_languages,
|
| 24 |
value=model_languages[0],
|
| 25 |
label="Model Language"
|
| 26 |
)
|
| 27 |
|
|
|
|
| 28 |
model_id = gr.Dropdown(
|
| 29 |
-
choices=[], # will be dynamically
|
| 30 |
label="Model",
|
| 31 |
value=None
|
| 32 |
)
|
|
@@ -34,34 +35,34 @@ with gr.Blocks() as iface:
|
|
| 34 |
# Function to update model_id dropdown choices based on model_language
|
| 35 |
def update_model_id(model_language_value):
|
| 36 |
model_ids = list(SUPPORTED_LLM_MODELS[model_language_value])
|
| 37 |
-
return gr.update(value=model_ids[0], choices=model_ids)
|
| 38 |
|
|
|
|
| 39 |
model_language.change(update_model_id, inputs=model_language, outputs=model_id)
|
| 40 |
|
| 41 |
-
#
|
| 42 |
prepare_int4_model = gr.Checkbox(
|
| 43 |
value=True,
|
| 44 |
label="Prepare INT4 Model"
|
| 45 |
)
|
| 46 |
|
| 47 |
-
#
|
| 48 |
enable_awq = gr.Checkbox(
|
| 49 |
value=False,
|
| 50 |
label="Enable AWQ",
|
| 51 |
-
visible=False
|
| 52 |
)
|
| 53 |
|
| 54 |
-
#
|
| 55 |
device = gr.Dropdown(
|
| 56 |
choices=["CPU", "GPU"],
|
| 57 |
value="CPU",
|
| 58 |
label="Device"
|
| 59 |
)
|
| 60 |
|
| 61 |
-
#
|
| 62 |
def get_model_path(model_language_value, model_id_value):
|
| 63 |
model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
|
| 64 |
-
pt_model_id = model_configuration["model_id"]
|
| 65 |
pt_model_name = model_id_value.split("-")[0]
|
| 66 |
int4_model_dir = Path(model_id_value) / "INT4_compressed_weights"
|
| 67 |
return model_configuration, int4_model_dir, pt_model_name
|
|
@@ -69,54 +70,44 @@ with gr.Blocks() as iface:
|
|
| 69 |
# Function to download the model if not already present
|
| 70 |
def download_model_if_needed(model_language_value, model_id_value):
|
| 71 |
model_configuration, int4_model_dir, pt_model_name = get_model_path(model_language_value, model_id_value)
|
| 72 |
-
|
| 73 |
int4_weights = int4_model_dir / "openvino_model.bin"
|
| 74 |
-
|
| 75 |
if not int4_weights.exists():
|
| 76 |
print(f"Downloading model {model_id_value}...")
|
| 77 |
-
#
|
| 78 |
-
# Example:
|
| 79 |
-
# r = requests.get(model_configuration["model_url"])
|
| 80 |
-
# with open(int4_weights, "wb") as f:
|
| 81 |
-
# f.write(r.content)
|
| 82 |
-
|
| 83 |
return int4_model_dir
|
| 84 |
|
| 85 |
-
# Load the model
|
| 86 |
def load_model(model_language_value, model_id_value):
|
| 87 |
int4_model_dir = download_model_if_needed(model_language_value, model_id_value)
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
core = ov.Core()
|
| 92 |
-
|
| 93 |
-
model_dir = int4_model_dir
|
| 94 |
-
model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
|
| 95 |
-
|
| 96 |
-
tok = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
| 97 |
ov_model = OVModelForCausalLM.from_pretrained(
|
| 98 |
-
|
| 99 |
-
device=device.value,
|
| 100 |
ov_config=ov_config,
|
| 101 |
-
config=AutoConfig.from_pretrained(
|
| 102 |
trust_remote_code=True
|
| 103 |
)
|
| 104 |
-
|
| 105 |
-
return tok, ov_model, model_configuration
|
| 106 |
|
| 107 |
-
# Gradio
|
| 108 |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
|
| 109 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
| 110 |
top_k = gr.Slider(minimum=0, maximum=50, value=50, label="Top K")
|
| 111 |
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, label="Repetition Penalty")
|
| 112 |
|
| 113 |
-
# Conversation history
|
| 114 |
-
history = gr.State([])
|
| 115 |
|
| 116 |
-
#
|
| 117 |
def generate_response(history, temperature, top_p, top_k, repetition_penalty, model_language_value, model_id_value):
|
| 118 |
-
tok, ov_model
|
| 119 |
-
|
| 120 |
def convert_history_to_token(history):
|
| 121 |
input_tokens = tok(" ".join([msg[0] for msg in history]), return_tensors="pt").input_ids
|
| 122 |
return input_tokens
|
|
@@ -148,23 +139,15 @@ with gr.Blocks() as iface:
|
|
| 148 |
history[-1][1] = partial_text
|
| 149 |
yield history
|
| 150 |
|
| 151 |
-
#
|
| 152 |
iface = gr.Interface(
|
| 153 |
fn=generate_response,
|
| 154 |
-
inputs=[
|
| 155 |
-
history,
|
| 156 |
-
temperature,
|
| 157 |
-
top_p,
|
| 158 |
-
top_k,
|
| 159 |
-
repetition_penalty,
|
| 160 |
-
model_language,
|
| 161 |
-
model_id
|
| 162 |
-
],
|
| 163 |
outputs=[gr.Textbox(label="Conversation History"), history],
|
| 164 |
live=True,
|
| 165 |
title="OpenVINO Chatbot"
|
| 166 |
)
|
| 167 |
|
| 168 |
-
# Launch Gradio app
|
| 169 |
if __name__ == "__main__":
|
| 170 |
iface.launch(debug=True, share=True, server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
import os
|
| 2 |
from pathlib import Path
|
| 3 |
import requests
|
|
|
|
| 4 |
import torch
|
| 5 |
from threading import Event, Thread
|
| 6 |
from transformers import AutoConfig, AutoTokenizer
|
|
|
|
| 16 |
# Initialize model language options
|
| 17 |
model_languages = list(SUPPORTED_LLM_MODELS)
|
| 18 |
|
| 19 |
+
# Define Gradio interface within a Blocks context
|
| 20 |
with gr.Blocks() as iface:
|
| 21 |
+
# Dropdown for model language selection
|
| 22 |
model_language = gr.Dropdown(
|
| 23 |
choices=model_languages,
|
| 24 |
value=model_languages[0],
|
| 25 |
label="Model Language"
|
| 26 |
)
|
| 27 |
|
| 28 |
+
# Dropdown for model ID, dynamically populated
|
| 29 |
model_id = gr.Dropdown(
|
| 30 |
+
choices=[], # will be populated dynamically
|
| 31 |
label="Model",
|
| 32 |
value=None
|
| 33 |
)
|
|
|
|
| 35 |
# Function to update model_id dropdown choices based on model_language
|
| 36 |
def update_model_id(model_language_value):
|
| 37 |
model_ids = list(SUPPORTED_LLM_MODELS[model_language_value])
|
| 38 |
+
return gr.Dropdown.update(value=model_ids[0], choices=model_ids)
|
| 39 |
|
| 40 |
+
# Update model_id choices when model_language changes
|
| 41 |
model_language.change(update_model_id, inputs=model_language, outputs=model_id)
|
| 42 |
|
| 43 |
+
# Checkbox for INT4 model preparation
|
| 44 |
prepare_int4_model = gr.Checkbox(
|
| 45 |
value=True,
|
| 46 |
label="Prepare INT4 Model"
|
| 47 |
)
|
| 48 |
|
| 49 |
+
# Checkbox for enabling AWQ (shown conditionally)
|
| 50 |
enable_awq = gr.Checkbox(
|
| 51 |
value=False,
|
| 52 |
label="Enable AWQ",
|
| 53 |
+
visible=False # visibility can be controlled in the UI logic
|
| 54 |
)
|
| 55 |
|
| 56 |
+
# Dropdown for device selection
|
| 57 |
device = gr.Dropdown(
|
| 58 |
choices=["CPU", "GPU"],
|
| 59 |
value="CPU",
|
| 60 |
label="Device"
|
| 61 |
)
|
| 62 |
|
| 63 |
+
# Function to retrieve model configuration and path
|
| 64 |
def get_model_path(model_language_value, model_id_value):
|
| 65 |
model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
|
|
|
|
| 66 |
pt_model_name = model_id_value.split("-")[0]
|
| 67 |
int4_model_dir = Path(model_id_value) / "INT4_compressed_weights"
|
| 68 |
return model_configuration, int4_model_dir, pt_model_name
|
|
|
|
| 70 |
# Function to download the model if not already present
|
| 71 |
def download_model_if_needed(model_language_value, model_id_value):
|
| 72 |
model_configuration, int4_model_dir, pt_model_name = get_model_path(model_language_value, model_id_value)
|
|
|
|
| 73 |
int4_weights = int4_model_dir / "openvino_model.bin"
|
|
|
|
| 74 |
if not int4_weights.exists():
|
| 75 |
print(f"Downloading model {model_id_value}...")
|
| 76 |
+
# Download logic (e.g., requests.get(model_configuration["model_url"])) can go here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
return int4_model_dir
|
| 78 |
|
| 79 |
+
# Load the model based on selected options
|
| 80 |
def load_model(model_language_value, model_id_value):
|
| 81 |
int4_model_dir = download_model_if_needed(model_language_value, model_id_value)
|
| 82 |
+
ov_config = {
|
| 83 |
+
hints.performance_mode(): hints.PerformanceMode.LATENCY,
|
| 84 |
+
streams.num(): "1",
|
| 85 |
+
props.cache_dir(): ""
|
| 86 |
+
}
|
| 87 |
core = ov.Core()
|
| 88 |
+
tok = AutoTokenizer.from_pretrained(int4_model_dir, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
ov_model = OVModelForCausalLM.from_pretrained(
|
| 90 |
+
int4_model_dir,
|
| 91 |
+
device=device.value,
|
| 92 |
ov_config=ov_config,
|
| 93 |
+
config=AutoConfig.from_pretrained(int4_model_dir, trust_remote_code=True),
|
| 94 |
trust_remote_code=True
|
| 95 |
)
|
| 96 |
+
return tok, ov_model
|
|
|
|
| 97 |
|
| 98 |
+
# Gradio sliders for model generation parameters
|
| 99 |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
|
| 100 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
| 101 |
top_k = gr.Slider(minimum=0, maximum=50, value=50, label="Top K")
|
| 102 |
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, label="Repetition Penalty")
|
| 103 |
|
| 104 |
+
# Conversation history state
|
| 105 |
+
history = gr.State([])
|
| 106 |
|
| 107 |
+
# Function to generate responses based on model and input
|
| 108 |
def generate_response(history, temperature, top_p, top_k, repetition_penalty, model_language_value, model_id_value):
|
| 109 |
+
tok, ov_model = load_model(model_language_value, model_id_value)
|
| 110 |
+
|
| 111 |
def convert_history_to_token(history):
|
| 112 |
input_tokens = tok(" ".join([msg[0] for msg in history]), return_tensors="pt").input_ids
|
| 113 |
return input_tokens
|
|
|
|
| 139 |
history[-1][1] = partial_text
|
| 140 |
yield history
|
| 141 |
|
| 142 |
+
# Set up the interface with inputs and outputs
|
| 143 |
iface = gr.Interface(
|
| 144 |
fn=generate_response,
|
| 145 |
+
inputs=[history, temperature, top_p, top_k, repetition_penalty, model_language, model_id],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
outputs=[gr.Textbox(label="Conversation History"), history],
|
| 147 |
live=True,
|
| 148 |
title="OpenVINO Chatbot"
|
| 149 |
)
|
| 150 |
|
| 151 |
+
# Launch the Gradio app
|
| 152 |
if __name__ == "__main__":
|
| 153 |
iface.launch(debug=True, share=True, server_name="0.0.0.0", server_port=7860)
|