Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,78 @@
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoTokenizer, AutoConfig
|
| 4 |
-
from optimum.intel.openvino import OVModelForCausalLM
|
| 5 |
-
import openvino as ov
|
| 6 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from typing import List, Tuple
|
| 8 |
from threading import Event, Thread
|
| 9 |
-
from gradio_helper import make_demo
|
| 10 |
-
from llm_config import SUPPORTED_LLM_MODELS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
# Define model
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
# Load model configuration
|
| 17 |
-
model_configuration = SUPPORTED_LLM_MODELS[model_language][model_id]
|
| 18 |
-
pt_model_id = model_configuration["model_id"]
|
| 19 |
-
int4_model_dir = os.path.join(model_id, "INT4_compressed_weights")
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
)
|
| 34 |
|
| 35 |
-
|
| 36 |
-
"""
|
| 37 |
-
Converts conversation history to tokens based on model configuration.
|
| 38 |
-
"""
|
| 39 |
-
input_ids = tok.encode(history[-1][0]) # Simple example for tokenizing the last user input.
|
| 40 |
-
return torch.LongTensor([input_ids])
|
| 41 |
|
|
|
|
| 42 |
def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id):
|
| 43 |
-
"""
|
| 44 |
-
Generates the next part of the conversation.
|
| 45 |
-
"""
|
| 46 |
input_ids = convert_history_to_token(history)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
streamer = TextIteratorStreamer(tok, timeout=3600.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
| 48 |
generate_kwargs = dict(
|
| 49 |
input_ids=input_ids,
|
| 50 |
max_new_tokens=256,
|
|
@@ -55,20 +83,44 @@ def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id)
|
|
| 55 |
repetition_penalty=repetition_penalty,
|
| 56 |
streamer=streamer,
|
| 57 |
)
|
| 58 |
-
|
| 59 |
-
#
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
partial_text = ""
|
| 64 |
for new_text in streamer:
|
| 65 |
-
partial_text
|
| 66 |
history[-1][1] = partial_text
|
| 67 |
yield history
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
# Gradio UI
|
| 73 |
-
demo = make_demo(run_fn=bot, stop_fn=request_cancel, title="OpenVINO Chatbot", language="en")
|
| 74 |
-
demo.launch(debug=True, share=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
+
import ipywidgets as widgets
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from transformers import AutoConfig, AutoTokenizer
|
| 7 |
+
from optimum.intel.openvino import OVModelForCausalLM
|
| 8 |
from typing import List, Tuple
|
| 9 |
from threading import Event, Thread
|
| 10 |
+
from gradio_helper import make_demo # Your helper function for Gradio demo
|
| 11 |
+
from llm_config import SUPPORTED_LLM_MODELS # Model configuration
|
| 12 |
+
from notebook_utils import device_widget # Device selection utility
|
| 13 |
+
import openvino as ov
|
| 14 |
+
import openvino.properties as props
|
| 15 |
+
import openvino.properties.hint as hints
|
| 16 |
+
import openvino.properties.streams as streams
|
| 17 |
+
import requests
|
| 18 |
|
| 19 |
+
# Define the model loading function (same as in your notebook)
|
| 20 |
+
def convert_to_int4(model_id, model_configuration, enable_awq=False):
|
| 21 |
+
# Model conversion logic here (same as in notebook)
|
| 22 |
+
compression_configs = {
|
| 23 |
+
"qwen2.5-0.5b-instruct": {"sym": True, "group_size": 128, "ratio": 1.0},
|
| 24 |
+
"default": {"sym": False, "group_size": 128, "ratio": 0.8},
|
| 25 |
+
}
|
| 26 |
+
model_compression_params = compression_configs.get(model_id, compression_configs["default"])
|
| 27 |
+
|
| 28 |
+
# Example conversion logic
|
| 29 |
+
int4_model_dir = Path(model_id) / "INT4_compressed_weights"
|
| 30 |
+
if (int4_model_dir / "openvino_model.xml").exists():
|
| 31 |
+
return int4_model_dir
|
| 32 |
+
remote_code = model_configuration.get("remote_code", False)
|
| 33 |
+
export_command_base = f"optimum-cli export openvino --model {model_configuration['model_id']} --task text-generation-with-past --weight-format int4"
|
| 34 |
+
int4_compression_args = f" --group-size {model_compression_params['group_size']} --ratio {model_compression_params['ratio']}"
|
| 35 |
+
if model_compression_params["sym"]:
|
| 36 |
+
int4_compression_args += " --sym"
|
| 37 |
+
if enable_awq:
|
| 38 |
+
int4_compression_args += " --awq --dataset wikitext2 --num-samples 128"
|
| 39 |
+
export_command_base += int4_compression_args
|
| 40 |
+
if remote_code:
|
| 41 |
+
export_command_base += " --trust-remote-code"
|
| 42 |
+
export_command = export_command_base + f" {str(int4_model_dir)}"
|
| 43 |
+
|
| 44 |
+
# Execute export command (shell command)
|
| 45 |
+
os.system(export_command)
|
| 46 |
+
return int4_model_dir
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
# Model and tokenizer loading
|
| 50 |
+
def load_model(model_dir, device):
|
| 51 |
+
# Load model using OpenVINO
|
| 52 |
+
ov_config = {hints.performance_mode(): hints.PerformanceMode.LATENCY, streams.num(): "1", props.cache_dir(): ""}
|
| 53 |
+
core = ov.Core()
|
| 54 |
+
model_name = model_configuration["model_id"]
|
| 55 |
+
tok = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
| 56 |
|
| 57 |
+
ov_model = OVModelForCausalLM.from_pretrained(
|
| 58 |
+
model_dir,
|
| 59 |
+
device=device,
|
| 60 |
+
ov_config=ov_config,
|
| 61 |
+
config=AutoConfig.from_pretrained(model_dir, trust_remote_code=True),
|
| 62 |
+
trust_remote_code=True,
|
| 63 |
+
)
|
| 64 |
|
| 65 |
+
return ov_model, tok
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
# Define the bot function that interacts with Gradio UI
|
| 68 |
def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id):
|
|
|
|
|
|
|
|
|
|
| 69 |
input_ids = convert_history_to_token(history)
|
| 70 |
+
if input_ids.shape[1] > 2000:
|
| 71 |
+
history = [history[-1]] # Limit input size
|
| 72 |
+
input_ids = convert_history_to_token(history)
|
| 73 |
+
|
| 74 |
streamer = TextIteratorStreamer(tok, timeout=3600.0, skip_prompt=True, skip_special_tokens=True)
|
| 75 |
+
|
| 76 |
generate_kwargs = dict(
|
| 77 |
input_ids=input_ids,
|
| 78 |
max_new_tokens=256,
|
|
|
|
| 83 |
repetition_penalty=repetition_penalty,
|
| 84 |
streamer=streamer,
|
| 85 |
)
|
| 86 |
+
|
| 87 |
+
# Function to generate response in a separate thread
|
| 88 |
+
def generate_and_signal_complete():
|
| 89 |
+
ov_model.generate(**generate_kwargs)
|
| 90 |
+
stream_complete.set()
|
| 91 |
+
|
| 92 |
+
t1 = Thread(target=generate_and_signal_complete)
|
| 93 |
+
t1.start()
|
| 94 |
+
|
| 95 |
+
# Process partial text and return updated history
|
| 96 |
partial_text = ""
|
| 97 |
for new_text in streamer:
|
| 98 |
+
partial_text = text_processor(partial_text, new_text)
|
| 99 |
history[-1][1] = partial_text
|
| 100 |
yield history
|
| 101 |
|
| 102 |
+
# Gradio interface setup
|
| 103 |
+
def create_gradio_interface():
|
| 104 |
+
model_language = SUPPORTED_LLM_MODELS.keys() # List of model languages
|
| 105 |
+
model_id = widgets.Dropdown(options=model_language, value=model_language[0], description="Model Language:")
|
| 106 |
+
|
| 107 |
+
# Choose model based on the selected language
|
| 108 |
+
model_configuration = SUPPORTED_LLM_MODELS[model_language[0]][model_id.value]
|
| 109 |
+
|
| 110 |
+
# Prepare model (convert to INT4, etc.)
|
| 111 |
+
int4_model_dir = convert_to_int4(model_id.value, model_configuration)
|
| 112 |
+
|
| 113 |
+
# Load model and tokenizer
|
| 114 |
+
device = device_widget("CPU")
|
| 115 |
+
ov_model, tok = load_model(int4_model_dir, device)
|
| 116 |
+
|
| 117 |
+
# Create the Gradio app
|
| 118 |
+
demo = make_demo(run_fn=bot, stop_fn=request_cancel, title=f"OpenVINO Chatbot", language=model_language[0])
|
| 119 |
+
|
| 120 |
+
return demo
|
| 121 |
+
|
| 122 |
+
# Run the Gradio app
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
app = create_gradio_interface()
|
| 125 |
+
app.launch(debug=True, share=True) # share=True for public access
|
| 126 |
|
|
|
|
|
|
|
|
|