Delete pretrain/selfsup_detr_cluster-ids-as-pseudo-labels
Browse files
pretrain/selfsup_detr_cluster-ids-as-pseudo-labels/20221026_193523.log
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pretrain/selfsup_detr_cluster-ids-as-pseudo-labels/20221026_193523.log.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pretrain/selfsup_detr_cluster-ids-as-pseudo-labels/detr_pseudo_label.py
DELETED
|
@@ -1,424 +0,0 @@
|
|
| 1 |
-
model = dict(
|
| 2 |
-
type='DETR',
|
| 3 |
-
backbone=dict(
|
| 4 |
-
type='ResNet',
|
| 5 |
-
depth=50,
|
| 6 |
-
num_stages=4,
|
| 7 |
-
out_indices=(3, ),
|
| 8 |
-
frozen_stages=4,
|
| 9 |
-
norm_cfg=dict(type='BN', requires_grad=False),
|
| 10 |
-
norm_eval=True,
|
| 11 |
-
style='pytorch',
|
| 12 |
-
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
| 13 |
-
bbox_head=dict(
|
| 14 |
-
type='DETRHead',
|
| 15 |
-
num_classes=256,
|
| 16 |
-
in_channels=2048,
|
| 17 |
-
transformer=dict(
|
| 18 |
-
type='Transformer',
|
| 19 |
-
encoder=dict(
|
| 20 |
-
type='DetrTransformerEncoder',
|
| 21 |
-
num_layers=6,
|
| 22 |
-
transformerlayers=dict(
|
| 23 |
-
type='BaseTransformerLayer',
|
| 24 |
-
attn_cfgs=[
|
| 25 |
-
dict(
|
| 26 |
-
type='MultiheadAttention',
|
| 27 |
-
embed_dims=256,
|
| 28 |
-
num_heads=8,
|
| 29 |
-
dropout=0.1)
|
| 30 |
-
],
|
| 31 |
-
feedforward_channels=2048,
|
| 32 |
-
ffn_dropout=0.1,
|
| 33 |
-
operation_order=('self_attn', 'norm', 'ffn', 'norm'))),
|
| 34 |
-
decoder=dict(
|
| 35 |
-
type='DetrTransformerDecoder',
|
| 36 |
-
return_intermediate=True,
|
| 37 |
-
num_layers=6,
|
| 38 |
-
transformerlayers=dict(
|
| 39 |
-
type='DetrTransformerDecoderLayer',
|
| 40 |
-
attn_cfgs=dict(
|
| 41 |
-
type='MultiheadAttention',
|
| 42 |
-
embed_dims=256,
|
| 43 |
-
num_heads=8,
|
| 44 |
-
dropout=0.1),
|
| 45 |
-
feedforward_channels=2048,
|
| 46 |
-
ffn_dropout=0.1,
|
| 47 |
-
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
| 48 |
-
'ffn', 'norm')))),
|
| 49 |
-
positional_encoding=dict(
|
| 50 |
-
type='SinePositionalEncoding', num_feats=128, normalize=True),
|
| 51 |
-
loss_cls=dict(
|
| 52 |
-
type='CrossEntropyLoss',
|
| 53 |
-
bg_cls_weight=0.1,
|
| 54 |
-
use_sigmoid=False,
|
| 55 |
-
loss_weight=1.0,
|
| 56 |
-
class_weight=1.0),
|
| 57 |
-
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
|
| 58 |
-
loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
|
| 59 |
-
train_cfg=dict(
|
| 60 |
-
assigner=dict(
|
| 61 |
-
type='HungarianAssigner',
|
| 62 |
-
cls_cost=dict(type='ClassificationCost', weight=1.0),
|
| 63 |
-
reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
|
| 64 |
-
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))),
|
| 65 |
-
test_cfg=dict(max_per_img=100))
|
| 66 |
-
dataset_type = 'CocoDataset'
|
| 67 |
-
data_root = 'data/coco/'
|
| 68 |
-
img_norm_cfg = dict(
|
| 69 |
-
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
| 70 |
-
train_pipeline = [
|
| 71 |
-
dict(type='LoadImageFromFile'),
|
| 72 |
-
dict(type='LoadAnnotations', with_bbox=True),
|
| 73 |
-
dict(type='RandomFlip', flip_ratio=0.5),
|
| 74 |
-
dict(
|
| 75 |
-
type='AutoAugment',
|
| 76 |
-
policies=[[{
|
| 77 |
-
'type':
|
| 78 |
-
'Resize',
|
| 79 |
-
'img_scale': [(480, 1333), (512, 1333), (544, 1333), (576, 1333),
|
| 80 |
-
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
|
| 81 |
-
(736, 1333), (768, 1333), (800, 1333)],
|
| 82 |
-
'multiscale_mode':
|
| 83 |
-
'value',
|
| 84 |
-
'keep_ratio':
|
| 85 |
-
True
|
| 86 |
-
}],
|
| 87 |
-
[{
|
| 88 |
-
'type': 'Resize',
|
| 89 |
-
'img_scale': [(400, 1333), (500, 1333), (600, 1333)],
|
| 90 |
-
'multiscale_mode': 'value',
|
| 91 |
-
'keep_ratio': True
|
| 92 |
-
}, {
|
| 93 |
-
'type': 'RandomCrop',
|
| 94 |
-
'crop_type': 'absolute_range',
|
| 95 |
-
'crop_size': (384, 600),
|
| 96 |
-
'allow_negative_crop': True
|
| 97 |
-
}, {
|
| 98 |
-
'type':
|
| 99 |
-
'Resize',
|
| 100 |
-
'img_scale': [(480, 1333), (512, 1333), (544, 1333),
|
| 101 |
-
(576, 1333), (608, 1333), (640, 1333),
|
| 102 |
-
(672, 1333), (704, 1333), (736, 1333),
|
| 103 |
-
(768, 1333), (800, 1333)],
|
| 104 |
-
'multiscale_mode':
|
| 105 |
-
'value',
|
| 106 |
-
'override':
|
| 107 |
-
True,
|
| 108 |
-
'keep_ratio':
|
| 109 |
-
True
|
| 110 |
-
}]]),
|
| 111 |
-
dict(
|
| 112 |
-
type='Normalize',
|
| 113 |
-
mean=[123.675, 116.28, 103.53],
|
| 114 |
-
std=[58.395, 57.12, 57.375],
|
| 115 |
-
to_rgb=True),
|
| 116 |
-
dict(type='Pad', size_divisor=1),
|
| 117 |
-
dict(type='DefaultFormatBundle'),
|
| 118 |
-
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
| 119 |
-
]
|
| 120 |
-
test_pipeline = [
|
| 121 |
-
dict(type='LoadImageFromFile'),
|
| 122 |
-
dict(
|
| 123 |
-
type='MultiScaleFlipAug',
|
| 124 |
-
img_scale=(1333, 800),
|
| 125 |
-
flip=False,
|
| 126 |
-
transforms=[
|
| 127 |
-
dict(type='Resize', keep_ratio=True),
|
| 128 |
-
dict(type='RandomFlip'),
|
| 129 |
-
dict(
|
| 130 |
-
type='Normalize',
|
| 131 |
-
mean=[123.675, 116.28, 103.53],
|
| 132 |
-
std=[58.395, 57.12, 57.375],
|
| 133 |
-
to_rgb=True),
|
| 134 |
-
dict(type='Pad', size_divisor=32),
|
| 135 |
-
dict(type='ImageToTensor', keys=['img']),
|
| 136 |
-
dict(type='Collect', keys=['img'])
|
| 137 |
-
])
|
| 138 |
-
]
|
| 139 |
-
data = dict(
|
| 140 |
-
samples_per_gpu=2,
|
| 141 |
-
workers_per_gpu=2,
|
| 142 |
-
train=dict(
|
| 143 |
-
type='CocoDataset',
|
| 144 |
-
ann_file='train2017_ratio3size0008@0.5_cluster-id-as-class.json',
|
| 145 |
-
img_prefix='data/coco/train2017/',
|
| 146 |
-
pipeline=[
|
| 147 |
-
dict(type='LoadImageFromFile'),
|
| 148 |
-
dict(type='LoadAnnotations', with_bbox=True),
|
| 149 |
-
dict(type='RandomFlip', flip_ratio=0.5),
|
| 150 |
-
dict(
|
| 151 |
-
type='AutoAugment',
|
| 152 |
-
policies=[[{
|
| 153 |
-
'type':
|
| 154 |
-
'Resize',
|
| 155 |
-
'img_scale': [(480, 1333), (512, 1333), (544, 1333),
|
| 156 |
-
(576, 1333), (608, 1333), (640, 1333),
|
| 157 |
-
(672, 1333), (704, 1333), (736, 1333),
|
| 158 |
-
(768, 1333), (800, 1333)],
|
| 159 |
-
'multiscale_mode':
|
| 160 |
-
'value',
|
| 161 |
-
'keep_ratio':
|
| 162 |
-
True
|
| 163 |
-
}],
|
| 164 |
-
[{
|
| 165 |
-
'type': 'Resize',
|
| 166 |
-
'img_scale': [(400, 1333), (500, 1333),
|
| 167 |
-
(600, 1333)],
|
| 168 |
-
'multiscale_mode': 'value',
|
| 169 |
-
'keep_ratio': True
|
| 170 |
-
}, {
|
| 171 |
-
'type': 'RandomCrop',
|
| 172 |
-
'crop_type': 'absolute_range',
|
| 173 |
-
'crop_size': (384, 600),
|
| 174 |
-
'allow_negative_crop': True
|
| 175 |
-
}, {
|
| 176 |
-
'type':
|
| 177 |
-
'Resize',
|
| 178 |
-
'img_scale': [(480, 1333), (512, 1333),
|
| 179 |
-
(544, 1333), (576, 1333),
|
| 180 |
-
(608, 1333), (640, 1333),
|
| 181 |
-
(672, 1333), (704, 1333),
|
| 182 |
-
(736, 1333), (768, 1333),
|
| 183 |
-
(800, 1333)],
|
| 184 |
-
'multiscale_mode':
|
| 185 |
-
'value',
|
| 186 |
-
'override':
|
| 187 |
-
True,
|
| 188 |
-
'keep_ratio':
|
| 189 |
-
True
|
| 190 |
-
}]]),
|
| 191 |
-
dict(
|
| 192 |
-
type='Normalize',
|
| 193 |
-
mean=[123.675, 116.28, 103.53],
|
| 194 |
-
std=[58.395, 57.12, 57.375],
|
| 195 |
-
to_rgb=True),
|
| 196 |
-
dict(type='Pad', size_divisor=1),
|
| 197 |
-
dict(type='DefaultFormatBundle'),
|
| 198 |
-
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
| 199 |
-
],
|
| 200 |
-
classes=[
|
| 201 |
-
'cluster_1', 'cluster_2', 'cluster_3', 'cluster_4', 'cluster_5',
|
| 202 |
-
'cluster_6', 'cluster_7', 'cluster_8', 'cluster_9', 'cluster_10',
|
| 203 |
-
'cluster_11', 'cluster_12', 'cluster_13', 'cluster_14',
|
| 204 |
-
'cluster_15', 'cluster_16', 'cluster_17', 'cluster_18',
|
| 205 |
-
'cluster_19', 'cluster_20', 'cluster_21', 'cluster_22',
|
| 206 |
-
'cluster_23', 'cluster_24', 'cluster_25', 'cluster_26',
|
| 207 |
-
'cluster_27', 'cluster_28', 'cluster_29', 'cluster_30',
|
| 208 |
-
'cluster_31', 'cluster_32', 'cluster_33', 'cluster_34',
|
| 209 |
-
'cluster_35', 'cluster_36', 'cluster_37', 'cluster_38',
|
| 210 |
-
'cluster_39', 'cluster_40', 'cluster_41', 'cluster_42',
|
| 211 |
-
'cluster_43', 'cluster_44', 'cluster_45', 'cluster_46',
|
| 212 |
-
'cluster_47', 'cluster_48', 'cluster_49', 'cluster_50',
|
| 213 |
-
'cluster_51', 'cluster_52', 'cluster_53', 'cluster_54',
|
| 214 |
-
'cluster_55', 'cluster_56', 'cluster_57', 'cluster_58',
|
| 215 |
-
'cluster_59', 'cluster_60', 'cluster_61', 'cluster_62',
|
| 216 |
-
'cluster_63', 'cluster_64', 'cluster_65', 'cluster_66',
|
| 217 |
-
'cluster_67', 'cluster_68', 'cluster_69', 'cluster_70',
|
| 218 |
-
'cluster_71', 'cluster_72', 'cluster_73', 'cluster_74',
|
| 219 |
-
'cluster_75', 'cluster_76', 'cluster_77', 'cluster_78',
|
| 220 |
-
'cluster_79', 'cluster_80', 'cluster_81', 'cluster_82',
|
| 221 |
-
'cluster_83', 'cluster_84', 'cluster_85', 'cluster_86',
|
| 222 |
-
'cluster_87', 'cluster_88', 'cluster_89', 'cluster_90',
|
| 223 |
-
'cluster_91', 'cluster_92', 'cluster_93', 'cluster_94',
|
| 224 |
-
'cluster_95', 'cluster_96', 'cluster_97', 'cluster_98',
|
| 225 |
-
'cluster_99', 'cluster_100', 'cluster_101', 'cluster_102',
|
| 226 |
-
'cluster_103', 'cluster_104', 'cluster_105', 'cluster_106',
|
| 227 |
-
'cluster_107', 'cluster_108', 'cluster_109', 'cluster_110',
|
| 228 |
-
'cluster_111', 'cluster_112', 'cluster_113', 'cluster_114',
|
| 229 |
-
'cluster_115', 'cluster_116', 'cluster_117', 'cluster_118',
|
| 230 |
-
'cluster_119', 'cluster_120', 'cluster_121', 'cluster_122',
|
| 231 |
-
'cluster_123', 'cluster_124', 'cluster_125', 'cluster_126',
|
| 232 |
-
'cluster_127', 'cluster_128', 'cluster_129', 'cluster_130',
|
| 233 |
-
'cluster_131', 'cluster_132', 'cluster_133', 'cluster_134',
|
| 234 |
-
'cluster_135', 'cluster_136', 'cluster_137', 'cluster_138',
|
| 235 |
-
'cluster_139', 'cluster_140', 'cluster_141', 'cluster_142',
|
| 236 |
-
'cluster_143', 'cluster_144', 'cluster_145', 'cluster_146',
|
| 237 |
-
'cluster_147', 'cluster_148', 'cluster_149', 'cluster_150',
|
| 238 |
-
'cluster_151', 'cluster_152', 'cluster_153', 'cluster_154',
|
| 239 |
-
'cluster_155', 'cluster_156', 'cluster_157', 'cluster_158',
|
| 240 |
-
'cluster_159', 'cluster_160', 'cluster_161', 'cluster_162',
|
| 241 |
-
'cluster_163', 'cluster_164', 'cluster_165', 'cluster_166',
|
| 242 |
-
'cluster_167', 'cluster_168', 'cluster_169', 'cluster_170',
|
| 243 |
-
'cluster_171', 'cluster_172', 'cluster_173', 'cluster_174',
|
| 244 |
-
'cluster_175', 'cluster_176', 'cluster_177', 'cluster_178',
|
| 245 |
-
'cluster_179', 'cluster_180', 'cluster_181', 'cluster_182',
|
| 246 |
-
'cluster_183', 'cluster_184', 'cluster_185', 'cluster_186',
|
| 247 |
-
'cluster_187', 'cluster_188', 'cluster_189', 'cluster_190',
|
| 248 |
-
'cluster_191', 'cluster_192', 'cluster_193', 'cluster_194',
|
| 249 |
-
'cluster_195', 'cluster_196', 'cluster_197', 'cluster_198',
|
| 250 |
-
'cluster_199', 'cluster_200', 'cluster_201', 'cluster_202',
|
| 251 |
-
'cluster_203', 'cluster_204', 'cluster_205', 'cluster_206',
|
| 252 |
-
'cluster_207', 'cluster_208', 'cluster_209', 'cluster_210',
|
| 253 |
-
'cluster_211', 'cluster_212', 'cluster_213', 'cluster_214',
|
| 254 |
-
'cluster_215', 'cluster_216', 'cluster_217', 'cluster_218',
|
| 255 |
-
'cluster_219', 'cluster_220', 'cluster_221', 'cluster_222',
|
| 256 |
-
'cluster_223', 'cluster_224', 'cluster_225', 'cluster_226',
|
| 257 |
-
'cluster_227', 'cluster_228', 'cluster_229', 'cluster_230',
|
| 258 |
-
'cluster_231', 'cluster_232', 'cluster_233', 'cluster_234',
|
| 259 |
-
'cluster_235', 'cluster_236', 'cluster_237', 'cluster_238',
|
| 260 |
-
'cluster_239', 'cluster_240', 'cluster_241', 'cluster_242',
|
| 261 |
-
'cluster_243', 'cluster_244', 'cluster_245', 'cluster_246',
|
| 262 |
-
'cluster_247', 'cluster_248', 'cluster_249', 'cluster_250',
|
| 263 |
-
'cluster_251', 'cluster_252', 'cluster_253', 'cluster_254',
|
| 264 |
-
'cluster_255', 'cluster_256'
|
| 265 |
-
]),
|
| 266 |
-
val=dict(
|
| 267 |
-
type='CocoDataset',
|
| 268 |
-
ann_file='data/coco/annotations/instances_val2017.json',
|
| 269 |
-
img_prefix='data/coco/val2017/',
|
| 270 |
-
pipeline=[
|
| 271 |
-
dict(type='LoadImageFromFile'),
|
| 272 |
-
dict(
|
| 273 |
-
type='MultiScaleFlipAug',
|
| 274 |
-
img_scale=(1333, 800),
|
| 275 |
-
flip=False,
|
| 276 |
-
transforms=[
|
| 277 |
-
dict(type='Resize', keep_ratio=True),
|
| 278 |
-
dict(type='RandomFlip'),
|
| 279 |
-
dict(
|
| 280 |
-
type='Normalize',
|
| 281 |
-
mean=[123.675, 116.28, 103.53],
|
| 282 |
-
std=[58.395, 57.12, 57.375],
|
| 283 |
-
to_rgb=True),
|
| 284 |
-
dict(type='Pad', size_divisor=32),
|
| 285 |
-
dict(type='ImageToTensor', keys=['img']),
|
| 286 |
-
dict(type='Collect', keys=['img'])
|
| 287 |
-
])
|
| 288 |
-
]),
|
| 289 |
-
test=dict(
|
| 290 |
-
type='CocoDataset',
|
| 291 |
-
ann_file='data/coco/annotations/instances_val2017.json',
|
| 292 |
-
img_prefix='data/coco/val2017/',
|
| 293 |
-
pipeline=[
|
| 294 |
-
dict(type='LoadImageFromFile'),
|
| 295 |
-
dict(
|
| 296 |
-
type='MultiScaleFlipAug',
|
| 297 |
-
img_scale=(1333, 800),
|
| 298 |
-
flip=False,
|
| 299 |
-
transforms=[
|
| 300 |
-
dict(type='Resize', keep_ratio=True),
|
| 301 |
-
dict(type='RandomFlip'),
|
| 302 |
-
dict(
|
| 303 |
-
type='Normalize',
|
| 304 |
-
mean=[123.675, 116.28, 103.53],
|
| 305 |
-
std=[58.395, 57.12, 57.375],
|
| 306 |
-
to_rgb=True),
|
| 307 |
-
dict(type='Pad', size_divisor=32),
|
| 308 |
-
dict(type='ImageToTensor', keys=['img']),
|
| 309 |
-
dict(type='Collect', keys=['img'])
|
| 310 |
-
])
|
| 311 |
-
]))
|
| 312 |
-
evaluation = dict(
|
| 313 |
-
interval=65535, metric='bbox', save_best='auto', gpu_collect=True)
|
| 314 |
-
checkpoint_config = dict(interval=1)
|
| 315 |
-
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
| 316 |
-
custom_hooks = [
|
| 317 |
-
dict(type='NumClassCheckHook'),
|
| 318 |
-
dict(
|
| 319 |
-
type='MMDetWandbHook',
|
| 320 |
-
init_kwargs=dict(project='I2B', group='finetune'),
|
| 321 |
-
interval=50,
|
| 322 |
-
num_eval_images=0,
|
| 323 |
-
log_checkpoint=False)
|
| 324 |
-
]
|
| 325 |
-
dist_params = dict(backend='nccl')
|
| 326 |
-
log_level = 'INFO'
|
| 327 |
-
load_from = None
|
| 328 |
-
resume_from = None
|
| 329 |
-
workflow = [('train', 1)]
|
| 330 |
-
opencv_num_threads = 0
|
| 331 |
-
mp_start_method = 'fork'
|
| 332 |
-
auto_scale_lr = dict(enable=True, base_batch_size=64)
|
| 333 |
-
custom_imports = dict(
|
| 334 |
-
imports=[
|
| 335 |
-
'mmselfsup.datasets.pipelines',
|
| 336 |
-
'selfsup.core.hook.momentum_update_hook',
|
| 337 |
-
'selfsup.datasets.pipelines.selfsup_pipelines',
|
| 338 |
-
'selfsup.datasets.pipelines.rand_aug',
|
| 339 |
-
'selfsup.datasets.single_view_coco',
|
| 340 |
-
'selfsup.datasets.multi_view_coco',
|
| 341 |
-
'selfsup.models.losses.contrastive_loss',
|
| 342 |
-
'selfsup.models.dense_heads.fcos_head',
|
| 343 |
-
'selfsup.models.dense_heads.retina_head',
|
| 344 |
-
'selfsup.models.dense_heads.detr_head',
|
| 345 |
-
'selfsup.models.dense_heads.deformable_detr_head',
|
| 346 |
-
'selfsup.models.roi_heads.bbox_heads.convfc_bbox_head',
|
| 347 |
-
'selfsup.models.roi_heads.standard_roi_head',
|
| 348 |
-
'selfsup.models.detectors.selfsup_detector',
|
| 349 |
-
'selfsup.models.detectors.selfsup_fcos',
|
| 350 |
-
'selfsup.models.detectors.selfsup_detr',
|
| 351 |
-
'selfsup.models.detectors.selfsup_deformable_detr',
|
| 352 |
-
'selfsup.models.detectors.selfsup_retinanet',
|
| 353 |
-
'selfsup.models.detectors.selfsup_mask_rcnn',
|
| 354 |
-
'selfsup.core.bbox.assigners.hungarian_assigner',
|
| 355 |
-
'selfsup.core.bbox.assigners.pseudo_hungarian_assigner',
|
| 356 |
-
'selfsup.core.bbox.match_costs.match_cost'
|
| 357 |
-
],
|
| 358 |
-
allow_failed_imports=False)
|
| 359 |
-
classes = [
|
| 360 |
-
'cluster_1', 'cluster_2', 'cluster_3', 'cluster_4', 'cluster_5',
|
| 361 |
-
'cluster_6', 'cluster_7', 'cluster_8', 'cluster_9', 'cluster_10',
|
| 362 |
-
'cluster_11', 'cluster_12', 'cluster_13', 'cluster_14', 'cluster_15',
|
| 363 |
-
'cluster_16', 'cluster_17', 'cluster_18', 'cluster_19', 'cluster_20',
|
| 364 |
-
'cluster_21', 'cluster_22', 'cluster_23', 'cluster_24', 'cluster_25',
|
| 365 |
-
'cluster_26', 'cluster_27', 'cluster_28', 'cluster_29', 'cluster_30',
|
| 366 |
-
'cluster_31', 'cluster_32', 'cluster_33', 'cluster_34', 'cluster_35',
|
| 367 |
-
'cluster_36', 'cluster_37', 'cluster_38', 'cluster_39', 'cluster_40',
|
| 368 |
-
'cluster_41', 'cluster_42', 'cluster_43', 'cluster_44', 'cluster_45',
|
| 369 |
-
'cluster_46', 'cluster_47', 'cluster_48', 'cluster_49', 'cluster_50',
|
| 370 |
-
'cluster_51', 'cluster_52', 'cluster_53', 'cluster_54', 'cluster_55',
|
| 371 |
-
'cluster_56', 'cluster_57', 'cluster_58', 'cluster_59', 'cluster_60',
|
| 372 |
-
'cluster_61', 'cluster_62', 'cluster_63', 'cluster_64', 'cluster_65',
|
| 373 |
-
'cluster_66', 'cluster_67', 'cluster_68', 'cluster_69', 'cluster_70',
|
| 374 |
-
'cluster_71', 'cluster_72', 'cluster_73', 'cluster_74', 'cluster_75',
|
| 375 |
-
'cluster_76', 'cluster_77', 'cluster_78', 'cluster_79', 'cluster_80',
|
| 376 |
-
'cluster_81', 'cluster_82', 'cluster_83', 'cluster_84', 'cluster_85',
|
| 377 |
-
'cluster_86', 'cluster_87', 'cluster_88', 'cluster_89', 'cluster_90',
|
| 378 |
-
'cluster_91', 'cluster_92', 'cluster_93', 'cluster_94', 'cluster_95',
|
| 379 |
-
'cluster_96', 'cluster_97', 'cluster_98', 'cluster_99', 'cluster_100',
|
| 380 |
-
'cluster_101', 'cluster_102', 'cluster_103', 'cluster_104', 'cluster_105',
|
| 381 |
-
'cluster_106', 'cluster_107', 'cluster_108', 'cluster_109', 'cluster_110',
|
| 382 |
-
'cluster_111', 'cluster_112', 'cluster_113', 'cluster_114', 'cluster_115',
|
| 383 |
-
'cluster_116', 'cluster_117', 'cluster_118', 'cluster_119', 'cluster_120',
|
| 384 |
-
'cluster_121', 'cluster_122', 'cluster_123', 'cluster_124', 'cluster_125',
|
| 385 |
-
'cluster_126', 'cluster_127', 'cluster_128', 'cluster_129', 'cluster_130',
|
| 386 |
-
'cluster_131', 'cluster_132', 'cluster_133', 'cluster_134', 'cluster_135',
|
| 387 |
-
'cluster_136', 'cluster_137', 'cluster_138', 'cluster_139', 'cluster_140',
|
| 388 |
-
'cluster_141', 'cluster_142', 'cluster_143', 'cluster_144', 'cluster_145',
|
| 389 |
-
'cluster_146', 'cluster_147', 'cluster_148', 'cluster_149', 'cluster_150',
|
| 390 |
-
'cluster_151', 'cluster_152', 'cluster_153', 'cluster_154', 'cluster_155',
|
| 391 |
-
'cluster_156', 'cluster_157', 'cluster_158', 'cluster_159', 'cluster_160',
|
| 392 |
-
'cluster_161', 'cluster_162', 'cluster_163', 'cluster_164', 'cluster_165',
|
| 393 |
-
'cluster_166', 'cluster_167', 'cluster_168', 'cluster_169', 'cluster_170',
|
| 394 |
-
'cluster_171', 'cluster_172', 'cluster_173', 'cluster_174', 'cluster_175',
|
| 395 |
-
'cluster_176', 'cluster_177', 'cluster_178', 'cluster_179', 'cluster_180',
|
| 396 |
-
'cluster_181', 'cluster_182', 'cluster_183', 'cluster_184', 'cluster_185',
|
| 397 |
-
'cluster_186', 'cluster_187', 'cluster_188', 'cluster_189', 'cluster_190',
|
| 398 |
-
'cluster_191', 'cluster_192', 'cluster_193', 'cluster_194', 'cluster_195',
|
| 399 |
-
'cluster_196', 'cluster_197', 'cluster_198', 'cluster_199', 'cluster_200',
|
| 400 |
-
'cluster_201', 'cluster_202', 'cluster_203', 'cluster_204', 'cluster_205',
|
| 401 |
-
'cluster_206', 'cluster_207', 'cluster_208', 'cluster_209', 'cluster_210',
|
| 402 |
-
'cluster_211', 'cluster_212', 'cluster_213', 'cluster_214', 'cluster_215',
|
| 403 |
-
'cluster_216', 'cluster_217', 'cluster_218', 'cluster_219', 'cluster_220',
|
| 404 |
-
'cluster_221', 'cluster_222', 'cluster_223', 'cluster_224', 'cluster_225',
|
| 405 |
-
'cluster_226', 'cluster_227', 'cluster_228', 'cluster_229', 'cluster_230',
|
| 406 |
-
'cluster_231', 'cluster_232', 'cluster_233', 'cluster_234', 'cluster_235',
|
| 407 |
-
'cluster_236', 'cluster_237', 'cluster_238', 'cluster_239', 'cluster_240',
|
| 408 |
-
'cluster_241', 'cluster_242', 'cluster_243', 'cluster_244', 'cluster_245',
|
| 409 |
-
'cluster_246', 'cluster_247', 'cluster_248', 'cluster_249', 'cluster_250',
|
| 410 |
-
'cluster_251', 'cluster_252', 'cluster_253', 'cluster_254', 'cluster_255',
|
| 411 |
-
'cluster_256'
|
| 412 |
-
]
|
| 413 |
-
optimizer = dict(
|
| 414 |
-
type='AdamW',
|
| 415 |
-
lr=0.0002,
|
| 416 |
-
weight_decay=0.0001,
|
| 417 |
-
paramwise_cfg=dict(
|
| 418 |
-
custom_keys=dict(backbone=dict(lr_mult=0, decay_mult=0))))
|
| 419 |
-
optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
|
| 420 |
-
lr_config = dict(policy='step', step=[40])
|
| 421 |
-
runner = dict(type='EpochBasedRunner', max_epochs=50)
|
| 422 |
-
work_dir = 'work_dirs/selfsup_detr_cluster-ids-as-pseudo-labels'
|
| 423 |
-
auto_resume = False
|
| 424 |
-
gpu_ids = range(0, 32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|