Spaces:
Runtime error
Runtime error
| import gc | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from controlnet_aux import (CannyDetector, ContentShuffleDetector, HEDdetector, | |
| LineartAnimeDetector, LineartDetector, | |
| MidasDetector, MLSDdetector, NormalBaeDetector, | |
| OpenposeDetector, PidiNetDetector) | |
| from controlnet_aux.util import HWC3 | |
| from cv_utils import resize_image | |
| from depth_estimator import DepthEstimator | |
| from image_segmentor import ImageSegmentor | |
| class Preprocessor: | |
| MODEL_ID = 'lllyasviel/Annotators' | |
| def __init__(self): | |
| self.model = None | |
| self.name = '' | |
| def load(self, name: str) -> None: | |
| if name == self.name: | |
| return | |
| if name == 'HED': | |
| self.model = HEDdetector.from_pretrained(self.MODEL_ID) | |
| elif name == 'Midas': | |
| self.model = MidasDetector.from_pretrained(self.MODEL_ID) | |
| elif name == 'MLSD': | |
| self.model = MLSDdetector.from_pretrained(self.MODEL_ID) | |
| elif name == 'Openpose': | |
| self.model = OpenposeDetector.from_pretrained(self.MODEL_ID) | |
| elif name == 'PidiNet': | |
| self.model = PidiNetDetector.from_pretrained(self.MODEL_ID) | |
| elif name == 'NormalBae': | |
| self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID) | |
| elif name == 'Lineart': | |
| self.model = LineartDetector.from_pretrained(self.MODEL_ID) | |
| elif name == 'LineartAnime': | |
| self.model = LineartAnimeDetector.from_pretrained(self.MODEL_ID) | |
| elif name == 'Canny': | |
| self.model = CannyDetector() | |
| elif name == 'ContentShuffle': | |
| self.model = ContentShuffleDetector() | |
| elif name == 'DPT': | |
| self.model = DepthEstimator() | |
| elif name == 'UPerNet': | |
| self.model = ImageSegmentor() | |
| else: | |
| raise ValueError | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| self.name = name | |
| def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image: | |
| if self.name == 'Canny': | |
| if 'detect_resolution' in kwargs: | |
| detect_resolution = kwargs.pop('detect_resolution') | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=detect_resolution) | |
| image = self.model(image, **kwargs) | |
| return PIL.Image.fromarray(image) | |
| elif self.name == 'Midas': | |
| detect_resolution = kwargs.pop('detect_resolution', 512) | |
| image_resolution = kwargs.pop('image_resolution', 512) | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=detect_resolution) | |
| image = self.model(image, **kwargs) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=image_resolution) | |
| return PIL.Image.fromarray(image) | |
| else: | |
| return self.model(image, **kwargs) | |