Spaces:
Runtime error
Runtime error
| from __future__ import annotations | |
| import gc | |
| import numpy as np | |
| import PIL.Image | |
| import spaces | |
| import torch | |
| from controlnet_aux.util import HWC3 | |
| from diffusers import ( | |
| ControlNetModel, | |
| DiffusionPipeline, | |
| StableDiffusionControlNetPipeline, | |
| UniPCMultistepScheduler, | |
| ) | |
| from cv_utils import resize_image | |
| from preprocessor import Preprocessor | |
| from settings import MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES | |
| CONTROLNET_MODEL_IDS = { | |
| "Canny": "checkpoints/canny/controlnet", | |
| "softedge": "checkpoints/hed/controlnet", | |
| "segmentation": "checkpoints/seg/controlnet", | |
| "depth": "checkpoints/depth/controlnet", | |
| "lineart": "checkpoints/lineart/controlnet", | |
| } | |
| def download_all_controlnet_weights() -> None: | |
| for model_id in CONTROLNET_MODEL_IDS.values(): | |
| ControlNetModel.from_pretrained(model_id) | |
| class Model: | |
| def __init__(self, base_model_id: str = "botp/stable-diffusion-v1-5", task_name: str = "Canny"): | |
| self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| self.base_model_id = "" | |
| self.task_name = "" | |
| self.pipe = self.load_pipe(base_model_id, task_name) | |
| self.preprocessor = Preprocessor() | |
| def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline: | |
| if ( | |
| base_model_id == self.base_model_id | |
| and task_name == self.task_name | |
| and hasattr(self, "pipe") | |
| and self.pipe is not None | |
| ): | |
| return self.pipe | |
| model_id = CONTROLNET_MODEL_IDS[task_name] | |
| controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float32) | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| base_model_id, safety_checker=None, controlnet=controlnet, torch_dtype=torch.float32 | |
| ) | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| # if self.device.type == "cuda": | |
| # pipe.disable_xformers_memory_efficient_attention() | |
| pipe.to(self.device) | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| self.base_model_id = base_model_id | |
| self.task_name = task_name | |
| return pipe | |
| def set_base_model(self, base_model_id: str) -> str: | |
| if not base_model_id or base_model_id == self.base_model_id: | |
| return self.base_model_id | |
| del self.pipe | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| try: | |
| self.pipe = self.load_pipe(base_model_id, self.task_name) | |
| except Exception: | |
| self.pipe = self.load_pipe(self.base_model_id, self.task_name) | |
| return self.base_model_id | |
| def load_controlnet_weight(self, task_name: str) -> None: | |
| if task_name == self.task_name: | |
| return | |
| if self.pipe is not None and hasattr(self.pipe, "controlnet"): | |
| del self.pipe.controlnet | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| model_id = CONTROLNET_MODEL_IDS[task_name] | |
| controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float32) | |
| controlnet.to(self.device) | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| self.pipe.controlnet = controlnet | |
| self.task_name = task_name | |
| def get_prompt(self, prompt: str, additional_prompt: str) -> str: | |
| if not prompt: | |
| prompt = additional_prompt | |
| else: | |
| prompt = f"{prompt}, {additional_prompt}" | |
| return prompt | |
| def run_pipe( | |
| self, | |
| prompt: str, | |
| negative_prompt: str, | |
| control_image: PIL.Image.Image, | |
| num_images: int, | |
| num_steps: int, | |
| guidance_scale: float, | |
| seed: int, | |
| ) -> list[PIL.Image.Image]: | |
| self.pipe.to(self.device) | |
| self.pipe.controlnet.to(self.device) | |
| generator = torch.Generator().manual_seed(seed) | |
| return self.pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=num_images, | |
| num_inference_steps=num_steps, | |
| generator=generator, | |
| image=control_image, | |
| ).images | |
| def process_canny( | |
| self, | |
| image: np.ndarray, | |
| prompt: str, | |
| additional_prompt: str, | |
| negative_prompt: str, | |
| num_images: int, | |
| image_resolution: int, | |
| num_steps: int, | |
| guidance_scale: float, | |
| seed: int, | |
| low_threshold: int, | |
| high_threshold: int, | |
| ) -> list[PIL.Image.Image]: | |
| if image is None: | |
| raise ValueError | |
| if image_resolution > MAX_IMAGE_RESOLUTION: | |
| raise ValueError | |
| if num_images > MAX_NUM_IMAGES: | |
| raise ValueError | |
| self.preprocessor.load("Canny") | |
| control_image = self.preprocessor( | |
| image=image, low_threshold=low_threshold, high_threshold=high_threshold, detect_resolution=image_resolution | |
| ) | |
| self.load_controlnet_weight("Canny") | |
| results = self.run_pipe( | |
| prompt=self.get_prompt(prompt, additional_prompt), | |
| negative_prompt=negative_prompt, | |
| control_image=control_image, | |
| num_images=num_images, | |
| num_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| seed=seed, | |
| ) | |
| conditions_of_generated_imgs = [ | |
| self.preprocessor( | |
| image=x, low_threshold=low_threshold, high_threshold=high_threshold, detect_resolution=image_resolution | |
| ) for x in results | |
| ] | |
| return [control_image] * num_images + results + conditions_of_generated_imgs | |
| def process_softedge( | |
| self, | |
| image: np.ndarray, | |
| prompt: str, | |
| additional_prompt: str, | |
| negative_prompt: str, | |
| num_images: int, | |
| image_resolution: int, | |
| preprocess_resolution: int, | |
| num_steps: int, | |
| guidance_scale: float, | |
| seed: int, | |
| preprocessor_name: str, | |
| ) -> list[PIL.Image.Image]: | |
| if image is None: | |
| raise ValueError | |
| if image_resolution > MAX_IMAGE_RESOLUTION: | |
| raise ValueError | |
| if num_images > MAX_NUM_IMAGES: | |
| raise ValueError | |
| if preprocessor_name == "None": | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=image_resolution) | |
| control_image = PIL.Image.fromarray(image) | |
| elif preprocessor_name in ["HED", "HED safe"]: | |
| safe = "safe" in preprocessor_name | |
| self.preprocessor.load("HED") | |
| control_image = self.preprocessor( | |
| image=image, | |
| image_resolution=image_resolution, | |
| detect_resolution=preprocess_resolution, | |
| scribble=safe, | |
| ) | |
| elif preprocessor_name in ["PidiNet", "PidiNet safe"]: | |
| safe = "safe" in preprocessor_name | |
| self.preprocessor.load("PidiNet") | |
| control_image = self.preprocessor( | |
| image=image, | |
| image_resolution=image_resolution, | |
| detect_resolution=preprocess_resolution, | |
| safe=safe, | |
| ) | |
| else: | |
| raise ValueError | |
| self.load_controlnet_weight("softedge") | |
| results = self.run_pipe( | |
| prompt=self.get_prompt(prompt, additional_prompt), | |
| negative_prompt=negative_prompt, | |
| control_image=control_image, | |
| num_images=num_images, | |
| num_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| seed=seed, | |
| ) | |
| conditions_of_generated_imgs = [ | |
| self.preprocessor( | |
| image=x, | |
| image_resolution=image_resolution, | |
| detect_resolution=preprocess_resolution, | |
| scribble=safe, | |
| ) for x in results | |
| ] | |
| return [control_image] * num_images + results + conditions_of_generated_imgs | |
| def process_segmentation( | |
| self, | |
| image: np.ndarray, | |
| prompt: str, | |
| additional_prompt: str, | |
| negative_prompt: str, | |
| num_images: int, | |
| image_resolution: int, | |
| preprocess_resolution: int, | |
| num_steps: int, | |
| guidance_scale: float, | |
| seed: int, | |
| preprocessor_name: str, | |
| ) -> list[PIL.Image.Image]: | |
| if image is None: | |
| raise ValueError | |
| if image_resolution > MAX_IMAGE_RESOLUTION: | |
| raise ValueError | |
| if num_images > MAX_NUM_IMAGES: | |
| raise ValueError | |
| if preprocessor_name == "None": | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=image_resolution) | |
| control_image = PIL.Image.fromarray(image) | |
| else: | |
| self.preprocessor.load(preprocessor_name) | |
| control_image = self.preprocessor( | |
| image=image, | |
| image_resolution=image_resolution, | |
| detect_resolution=preprocess_resolution, | |
| ) | |
| self.load_controlnet_weight("segmentation") | |
| results = self.run_pipe( | |
| prompt=self.get_prompt(prompt, additional_prompt), | |
| negative_prompt=negative_prompt, | |
| control_image=control_image, | |
| num_images=num_images, | |
| num_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| seed=seed, | |
| ) | |
| self.preprocessor.load('UPerNet') | |
| conditions_of_generated_imgs = [ | |
| self.preprocessor( | |
| image=np.array(x), | |
| image_resolution=image_resolution, | |
| detect_resolution=preprocess_resolution, | |
| ) for x in results | |
| ] | |
| return [control_image] * num_images + results + conditions_of_generated_imgs | |
| def process_depth( | |
| self, | |
| image: np.ndarray, | |
| prompt: str, | |
| additional_prompt: str, | |
| negative_prompt: str, | |
| num_images: int, | |
| image_resolution: int, | |
| preprocess_resolution: int, | |
| num_steps: int, | |
| guidance_scale: float, | |
| seed: int, | |
| preprocessor_name: str, | |
| ) -> list[PIL.Image.Image]: | |
| if image is None: | |
| raise ValueError | |
| if image_resolution > MAX_IMAGE_RESOLUTION: | |
| raise ValueError | |
| if num_images > MAX_NUM_IMAGES: | |
| raise ValueError | |
| if preprocessor_name == "None": | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=image_resolution) | |
| control_image = PIL.Image.fromarray(image) | |
| else: | |
| self.preprocessor.load(preprocessor_name) | |
| control_image = self.preprocessor( | |
| image=image, | |
| image_resolution=image_resolution, | |
| detect_resolution=preprocess_resolution, | |
| ) | |
| self.load_controlnet_weight("depth") | |
| results = self.run_pipe( | |
| prompt=self.get_prompt(prompt, additional_prompt), | |
| negative_prompt=negative_prompt, | |
| control_image=control_image, | |
| num_images=num_images, | |
| num_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| seed=seed, | |
| ) | |
| conditions_of_generated_imgs = [ | |
| self.preprocessor( | |
| image=x, | |
| image_resolution=image_resolution, | |
| detect_resolution=preprocess_resolution, | |
| ) for x in results | |
| ] | |
| return [control_image] * num_images + results + conditions_of_generated_imgs | |
| def process_lineart( | |
| self, | |
| image: np.ndarray, | |
| prompt: str, | |
| additional_prompt: str, | |
| negative_prompt: str, | |
| num_images: int, | |
| image_resolution: int, | |
| preprocess_resolution: int, | |
| num_steps: int, | |
| guidance_scale: float, | |
| seed: int, | |
| preprocessor_name: str, | |
| ) -> list[PIL.Image.Image]: | |
| if image is None: | |
| raise ValueError | |
| if image_resolution > MAX_IMAGE_RESOLUTION: | |
| raise ValueError | |
| if num_images > MAX_NUM_IMAGES: | |
| raise ValueError | |
| if preprocessor_name in ["None", "None (anime)"]: | |
| image = 255 - HWC3(image) | |
| image = resize_image(image, resolution=image_resolution) | |
| control_image = PIL.Image.fromarray(image) | |
| elif preprocessor_name in ["Lineart", "Lineart coarse"]: | |
| coarse = "coarse" in preprocessor_name | |
| self.preprocessor.load("Lineart") | |
| control_image = self.preprocessor( | |
| image=image, | |
| image_resolution=image_resolution, | |
| detect_resolution=preprocess_resolution, | |
| coarse=coarse, | |
| ) | |
| elif preprocessor_name == "Lineart (anime)": | |
| self.preprocessor.load("LineartAnime") | |
| control_image = self.preprocessor( | |
| image=image, | |
| image_resolution=image_resolution, | |
| detect_resolution=preprocess_resolution, | |
| ) | |
| # NOTE: We still use the general lineart model | |
| if "anime" in preprocessor_name: | |
| self.load_controlnet_weight("lineart_anime") | |
| else: | |
| self.load_controlnet_weight("lineart") | |
| results = self.run_pipe( | |
| prompt=self.get_prompt(prompt, additional_prompt), | |
| negative_prompt=negative_prompt, | |
| control_image=control_image, | |
| num_images=num_images, | |
| num_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| seed=seed, | |
| ) | |
| self.preprocessor.load("Lineart") | |
| conditions_of_generated_imgs = [ | |
| self.preprocessor( | |
| image=x, | |
| image_resolution=image_resolution, | |
| detect_resolution=preprocess_resolution, | |
| ) for x in results | |
| ] | |
| control_image = PIL.Image.fromarray((255 - np.array(control_image)).astype(np.uint8)) | |
| conditions_of_generated_imgs = [PIL.Image.fromarray((255 - np.array(x)).astype(np.uint8)) for x in conditions_of_generated_imgs] | |
| return [control_image] * num_images + results + conditions_of_generated_imgs | |