EC2 Default User
commited on
Commit
·
12b050a
1
Parent(s):
5d7adbb
init commit
Browse files- .gitattributes +2 -0
- SimSong.ttc +3 -0
- app.py +266 -0
- clip_paper.png +3 -0
- image.png +3 -0
- mistral_paper.png +3 -0
- postprocess.py +887 -0
- requirements.txt +13 -0
- tatr-app.py +294 -0
- yolov8/runs/detect/yolov8s-custom-detection/weights/best.pt +3 -0
- yolov8/runs/detect/yolov8s-custom-structure-all/weights/best.pt +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.ttc filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
SimSong.ttc
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cff39c3a0d87e3851297b35826489032448851df948e41fc56b2fe39c38d58e3
|
| 3 |
+
size 36859516
|
app.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
import matplotlib.patches as patches
|
| 3 |
+
from matplotlib.patches import Patch
|
| 4 |
+
import io
|
| 5 |
+
import cv2
|
| 6 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 7 |
+
import numpy as np
|
| 8 |
+
import csv
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
from ultralytics import YOLO
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
from paddleocr import PaddleOCR
|
| 15 |
+
import postprocess
|
| 16 |
+
|
| 17 |
+
import gradio as gr
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
detection_model = YOLO('yolov8/runs/detect/yolov8s-custom-detection/weights/best.pt').to(device)
|
| 22 |
+
structure_model = YOLO('yolov8/runs/detect/yolov8s-custom-structure-all/weights/best.pt').to(device)
|
| 23 |
+
ocr_model = PaddleOCR(use_angle_cls=True, lang="ch", det_limit_side_len=1920) # TODO use large det_limit_side_len to get better OCR result
|
| 24 |
+
|
| 25 |
+
detection_class_names = ['table', 'table rotated']
|
| 26 |
+
structure_class_names = [
|
| 27 |
+
'table', 'table column', 'table row', 'table column header',
|
| 28 |
+
'table projected row header', 'table spanning cell', 'no object'
|
| 29 |
+
]
|
| 30 |
+
structure_class_map = {k: v for v, k in enumerate(structure_class_names)}
|
| 31 |
+
structure_class_thresholds = {
|
| 32 |
+
"table": 0.5,
|
| 33 |
+
"table column": 0.5,
|
| 34 |
+
"table row": 0.5,
|
| 35 |
+
"table column header": 0.5,
|
| 36 |
+
"table projected row header": 0.5,
|
| 37 |
+
"table spanning cell": 0.5,
|
| 38 |
+
"no object": 10
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def table_detection(image):
|
| 43 |
+
imgsz = 800
|
| 44 |
+
pred = detection_model.predict(image, imgsz=imgsz)
|
| 45 |
+
pred = pred[0].boxes
|
| 46 |
+
result = pred.cpu().numpy()
|
| 47 |
+
result_list = [list(result.xywhn[i]) + [result.conf[i], result.cls[i]] for i in range(result.shape[0])]
|
| 48 |
+
return result_list
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def table_structure(image):
|
| 52 |
+
imgsz = 1024
|
| 53 |
+
pred = structure_model.predict(image, imgsz=imgsz)
|
| 54 |
+
pred = pred[0].boxes
|
| 55 |
+
result = pred.cpu().numpy()
|
| 56 |
+
result_list = [list(result.xywhn[i]) + [result.conf[i], result.cls[i]] for i in range(result.shape[0])]
|
| 57 |
+
return result_list
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def crop_image(image, detection_result):
|
| 61 |
+
# crop_filenames = []
|
| 62 |
+
width = image.shape[1]
|
| 63 |
+
height = image.shape[0]
|
| 64 |
+
# print(width, height)
|
| 65 |
+
for i, result in enumerate(detection_result[:1]): # TODO only return first detected table
|
| 66 |
+
class_id = int(result[5])
|
| 67 |
+
score = float(result[4])
|
| 68 |
+
min_x = result[0]
|
| 69 |
+
min_y = result[1]
|
| 70 |
+
w = result[2]
|
| 71 |
+
h = result[3]
|
| 72 |
+
|
| 73 |
+
# x1 = max(0, int((min_x-w/2-0.02)*width)) # TODO expand 2%
|
| 74 |
+
# y1 = max(0, int((min_y-h/2-0.02)*height)) # TODO expand 2%
|
| 75 |
+
# x2 = min(width, int((min_x+w/2+0.02)*width)) # TODO expand 2%
|
| 76 |
+
# y2 = min(height, int((min_y+h/2+0.02)*height)) # TODO expand 2%
|
| 77 |
+
x1 = max(0, int((min_x-w/2)*width)-10) # TODO expand 10px
|
| 78 |
+
y1 = max(0, int((min_y-h/2)*height)-10) # TODO expand 10px
|
| 79 |
+
x2 = min(width, int((min_x+w/2)*width)+10) # TODO expand 10px
|
| 80 |
+
y2 = min(height, int((min_y+h/2)*height)+10) # TODO expand 10px
|
| 81 |
+
# print(x1, y1, x2, y2)
|
| 82 |
+
crop_image = image[y1:y2, x1:x2, :]
|
| 83 |
+
# crop_filename = filename[:-4]+'_'+str(i)+'_'+detection_class_names[class_id]+filename[-4:]
|
| 84 |
+
# crop_filenames.append(crop_filename)
|
| 85 |
+
# cv2.imwrite(crop_filename, crop_image)
|
| 86 |
+
return crop_image
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def convert_stucture(ocr_result, image, structure_result):
|
| 90 |
+
width = image.shape[1]
|
| 91 |
+
height = image.shape[0]
|
| 92 |
+
# print(width, height)
|
| 93 |
+
|
| 94 |
+
bboxes = []
|
| 95 |
+
scores = []
|
| 96 |
+
labels = []
|
| 97 |
+
for i, result in enumerate(structure_result):
|
| 98 |
+
class_id = int(result[5])
|
| 99 |
+
score = float(result[4])
|
| 100 |
+
min_x = result[0]
|
| 101 |
+
min_y = result[1]
|
| 102 |
+
w = result[2]
|
| 103 |
+
h = result[3]
|
| 104 |
+
|
| 105 |
+
x1 = int((min_x-w/2)*width)
|
| 106 |
+
y1 = int((min_y-h/2)*height)
|
| 107 |
+
x2 = int((min_x+w/2)*width)
|
| 108 |
+
y2 = int((min_y+h/2)*height)
|
| 109 |
+
# print(x1, y1, x2, y2)
|
| 110 |
+
|
| 111 |
+
bboxes.append([x1, y1, x2, y2])
|
| 112 |
+
scores.append(score)
|
| 113 |
+
labels.append(class_id)
|
| 114 |
+
|
| 115 |
+
table_objects = []
|
| 116 |
+
for bbox, score, label in zip(bboxes, scores, labels):
|
| 117 |
+
table_objects.append({'bbox': bbox, 'score': score, 'label': label})
|
| 118 |
+
# print('table_objects:', table_objects)
|
| 119 |
+
|
| 120 |
+
table = {'objects': table_objects, 'page_num': 0}
|
| 121 |
+
|
| 122 |
+
table_class_objects = [obj for obj in table_objects if obj['label'] == structure_class_map['table']]
|
| 123 |
+
if len(table_class_objects) > 1:
|
| 124 |
+
table_class_objects = sorted(table_class_objects, key=lambda x: x['score'], reverse=True)
|
| 125 |
+
try:
|
| 126 |
+
table_bbox = list(table_class_objects[0]['bbox'])
|
| 127 |
+
except:
|
| 128 |
+
table_bbox = (0,0,1000,1000)
|
| 129 |
+
# print('table_class_objects:', table_class_objects)
|
| 130 |
+
# print('table_bbox:', table_bbox)
|
| 131 |
+
|
| 132 |
+
page_tokens = ocr_result
|
| 133 |
+
tokens_in_table = [token for token in page_tokens if postprocess.iob(token['bbox'], table_bbox) >= 0.5]
|
| 134 |
+
# print('tokens_in_table:', tokens_in_table)
|
| 135 |
+
|
| 136 |
+
table_structures, cells, confidence_score = postprocess.objects_to_cells(table, table_objects, tokens_in_table, structure_class_names, structure_class_thresholds)
|
| 137 |
+
|
| 138 |
+
return table_structures, cells, confidence_score
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def visualize_cells(image, table_structures, cells):
|
| 142 |
+
width = image.shape[1]
|
| 143 |
+
height = image.shape[0]
|
| 144 |
+
# print(width, height)
|
| 145 |
+
empty_image = np.zeros((height, width, 3), np.uint8)
|
| 146 |
+
empty_image.fill(255)
|
| 147 |
+
empty_image = Image.fromarray(cv2.cvtColor(empty_image, cv2.COLOR_BGR2RGB))
|
| 148 |
+
draw = ImageDraw.Draw(empty_image)
|
| 149 |
+
fontStyle = ImageFont.truetype("SimSong.ttc", 10, encoding="utf-8")
|
| 150 |
+
|
| 151 |
+
num_cols = len(table_structures['columns'])
|
| 152 |
+
num_rows = len(table_structures['rows'])
|
| 153 |
+
data_rows = [['' for _ in range(num_cols)] for _ in range(num_rows)]
|
| 154 |
+
for i, cell in enumerate(cells):
|
| 155 |
+
bbox = cell['bbox']
|
| 156 |
+
x1 = int(bbox[0])
|
| 157 |
+
y1 = int(bbox[1])
|
| 158 |
+
x2 = int(bbox[2])
|
| 159 |
+
y2 = int(bbox[3])
|
| 160 |
+
col_num = cell['column_nums'][0]
|
| 161 |
+
row_num = cell['row_nums'][0]
|
| 162 |
+
spans = cell['spans']
|
| 163 |
+
text = ''
|
| 164 |
+
for span in spans:
|
| 165 |
+
if 'text' in span:
|
| 166 |
+
text += span['text']
|
| 167 |
+
data_rows[row_num][col_num] = text
|
| 168 |
+
|
| 169 |
+
# print('text:', text)
|
| 170 |
+
text_len = len(text)
|
| 171 |
+
# print('text_len:', text_len)
|
| 172 |
+
cell_width = x2-x1
|
| 173 |
+
# print('cell_width:', cell_width)
|
| 174 |
+
num_per_line = cell_width//10
|
| 175 |
+
# print('num_per_line:', num_per_line)
|
| 176 |
+
if num_per_line != 0:
|
| 177 |
+
line_num = text_len//num_per_line
|
| 178 |
+
else:
|
| 179 |
+
line_num = 0
|
| 180 |
+
# print('line_num:', line_num)
|
| 181 |
+
new_text = text[:num_per_line]+'\n'
|
| 182 |
+
for j in range(line_num):
|
| 183 |
+
new_text += text[(j+1)*num_per_line:(j+2)*num_per_line]+'\n'
|
| 184 |
+
# print('new_text:', new_text)
|
| 185 |
+
text = new_text
|
| 186 |
+
|
| 187 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), color=(0,255,0))
|
| 188 |
+
cv2.putText(image, str(row_num)+'-'+str(col_num), (x1, y1+30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255))
|
| 189 |
+
|
| 190 |
+
# cv2.rectangle(empty_image, (x1, y1), (x2, y2), color=(0,0,255))
|
| 191 |
+
# cv2.putText(empty_image, str(row_num)+'-'+str(col_num), (x1-10, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255))
|
| 192 |
+
# cv2.putText(empty_image, text, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255))
|
| 193 |
+
draw.rectangle([(x1, y1), (x2, y2)], (255,255,255), (0,255,0))
|
| 194 |
+
draw.text((x1-20, y1), str(row_num)+'-'+str(col_num), (255,0,0), font=fontStyle)
|
| 195 |
+
draw.text((x1, y1), text, (0,0,255), font=fontStyle)
|
| 196 |
+
|
| 197 |
+
df = pd.DataFrame(data_rows[1:], columns=data_rows[0])
|
| 198 |
+
return image, df, df.to_json()
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def ocr(image):
|
| 202 |
+
result = ocr_model.ocr(image, cls=True)
|
| 203 |
+
result = result[0]
|
| 204 |
+
new_result = []
|
| 205 |
+
if result is not None:
|
| 206 |
+
bounding_boxes = [line[0] for line in result]
|
| 207 |
+
txts = [line[1][0] for line in result]
|
| 208 |
+
scores = [line[1][1] for line in result]
|
| 209 |
+
# print('txts:', txts)
|
| 210 |
+
# print('scores:', scores)
|
| 211 |
+
# print('bounding_boxes:', bounding_boxes)
|
| 212 |
+
for label, bbox in zip(txts, bounding_boxes):
|
| 213 |
+
new_result.append({'bbox': [bbox[0][0], bbox[0][1], bbox[2][0], bbox[2][1]], 'text': label})
|
| 214 |
+
|
| 215 |
+
return new_result
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def detect_and_crop_table(image):
|
| 219 |
+
detection_result = table_detection(image)
|
| 220 |
+
# print('detection_result:', detection_result)
|
| 221 |
+
cropped_table = crop_image(image, detection_result)
|
| 222 |
+
|
| 223 |
+
return cropped_table
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def recognize_table(image, ocr_result):
|
| 227 |
+
structure_result = table_structure(image)
|
| 228 |
+
print('structure_result:', structure_result)
|
| 229 |
+
table_structures, cells, confidence_score = convert_stucture(ocr_result, image, structure_result)
|
| 230 |
+
print('table_structures:', table_structures)
|
| 231 |
+
print('cells:', cells)
|
| 232 |
+
print('confidence_score:', confidence_score)
|
| 233 |
+
image, df, data = visualize_cells(image, table_structures, cells)
|
| 234 |
+
|
| 235 |
+
return image, df, data
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def process_pdf(image):
|
| 239 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 240 |
+
|
| 241 |
+
cropped_table = detect_and_crop_table(image)
|
| 242 |
+
|
| 243 |
+
ocr_result = ocr(cropped_table)
|
| 244 |
+
# print('ocr_result:', ocr_result)
|
| 245 |
+
|
| 246 |
+
image, df, data = recognize_table(cropped_table, ocr_result)
|
| 247 |
+
print('df:', df)
|
| 248 |
+
|
| 249 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 250 |
+
|
| 251 |
+
return image, df, data
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
title = "Demo: table detection & recognition with Table Structure Recognition (Yolov8)."
|
| 255 |
+
description = """Demo for table extraction with the Table Structure Recognition (Yolov8)."""
|
| 256 |
+
examples = [['image.png'], ['mistral_paper.png']]
|
| 257 |
+
|
| 258 |
+
app = gr.Interface(fn=process_pdf,
|
| 259 |
+
inputs=gr.Image(type="numpy"),
|
| 260 |
+
outputs=[gr.Image(type="numpy", label="Detected table"), gr.Dataframe(label="Table as CSV"), gr.JSON(label="Data as JSON")],
|
| 261 |
+
title=title,
|
| 262 |
+
description=description,
|
| 263 |
+
examples=examples)
|
| 264 |
+
app.queue()
|
| 265 |
+
# app.launch(debug=True, share=True)
|
| 266 |
+
app.launch()
|
clip_paper.png
ADDED
|
Git LFS Details
|
image.png
ADDED
|
Git LFS Details
|
mistral_paper.png
ADDED
|
Git LFS Details
|
postprocess.py
ADDED
|
@@ -0,0 +1,887 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (C) 2021 Microsoft Corporation
|
| 3 |
+
"""
|
| 4 |
+
from collections import defaultdict
|
| 5 |
+
|
| 6 |
+
from fitz import Rect
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def apply_threshold(objects, threshold):
|
| 10 |
+
"""
|
| 11 |
+
Filter out objects below a certain score.
|
| 12 |
+
"""
|
| 13 |
+
return [obj for obj in objects if obj['score'] >= threshold]
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def apply_class_thresholds(bboxes, labels, scores, class_names, class_thresholds):
|
| 17 |
+
"""
|
| 18 |
+
Filter out bounding boxes whose confidence is below the confidence threshold for
|
| 19 |
+
its associated class label.
|
| 20 |
+
"""
|
| 21 |
+
# Apply class-specific thresholds
|
| 22 |
+
indices_above_threshold = [idx for idx, (score, label) in enumerate(zip(scores, labels))
|
| 23 |
+
if score >= class_thresholds[
|
| 24 |
+
class_names[label]
|
| 25 |
+
]
|
| 26 |
+
]
|
| 27 |
+
bboxes = [bboxes[idx] for idx in indices_above_threshold]
|
| 28 |
+
scores = [scores[idx] for idx in indices_above_threshold]
|
| 29 |
+
labels = [labels[idx] for idx in indices_above_threshold]
|
| 30 |
+
|
| 31 |
+
return bboxes, scores, labels
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def iou(bbox1, bbox2):
|
| 35 |
+
"""
|
| 36 |
+
Compute the intersection-over-union of two bounding boxes.
|
| 37 |
+
"""
|
| 38 |
+
intersection = Rect(bbox1).intersect(bbox2)
|
| 39 |
+
union = Rect(bbox1).include_rect(bbox2)
|
| 40 |
+
|
| 41 |
+
union_area = union.get_area() # getArea()
|
| 42 |
+
if union_area > 0:
|
| 43 |
+
return intersection.get_area() / union.get_area() # .getArea()
|
| 44 |
+
|
| 45 |
+
return 0
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def iob(bbox1, bbox2):
|
| 49 |
+
"""
|
| 50 |
+
Compute the intersection area over box area, for bbox1.
|
| 51 |
+
"""
|
| 52 |
+
intersection = Rect(bbox1).intersect(bbox2)
|
| 53 |
+
|
| 54 |
+
bbox1_area = Rect(bbox1).get_area() # .getArea()
|
| 55 |
+
if bbox1_area > 0:
|
| 56 |
+
return intersection.get_area() / bbox1_area # getArea()
|
| 57 |
+
|
| 58 |
+
return 0
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def objects_to_cells(table, objects_in_table, tokens_in_table, class_map, class_thresholds):
|
| 62 |
+
"""
|
| 63 |
+
Process the bounding boxes produced by the table structure recognition model
|
| 64 |
+
and the token/word/span bounding boxes into table cells.
|
| 65 |
+
|
| 66 |
+
Also return a confidence score based on how well the text was able to be
|
| 67 |
+
uniquely slotted into the cells detected by the table model.
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
table_structures = objects_to_table_structures(table, objects_in_table, tokens_in_table, class_map,
|
| 71 |
+
class_thresholds)
|
| 72 |
+
|
| 73 |
+
# Check for a valid table
|
| 74 |
+
if len(table_structures['columns']) < 1 or len(table_structures['rows']) < 1:
|
| 75 |
+
cells = []#None
|
| 76 |
+
confidence_score = 0
|
| 77 |
+
else:
|
| 78 |
+
cells, confidence_score = table_structure_to_cells(table_structures, tokens_in_table, table['bbox'])
|
| 79 |
+
|
| 80 |
+
return table_structures, cells, confidence_score
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def objects_to_table_structures(table_object, objects_in_table, tokens_in_table, class_names, class_thresholds):
|
| 84 |
+
"""
|
| 85 |
+
Process the bounding boxes produced by the table structure recognition model into
|
| 86 |
+
a *consistent* set of table structures (rows, columns, supercells, headers).
|
| 87 |
+
This entails resolving conflicts/overlaps, and ensuring the boxes meet certain alignment
|
| 88 |
+
conditions (for example: rows should all have the same width, etc.).
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
page_num = table_object['page_num']
|
| 92 |
+
|
| 93 |
+
table_structures = {}
|
| 94 |
+
|
| 95 |
+
columns = [obj for obj in objects_in_table if class_names[obj['label']] == 'table column']
|
| 96 |
+
rows = [obj for obj in objects_in_table if class_names[obj['label']] == 'table row']
|
| 97 |
+
headers = [obj for obj in objects_in_table if class_names[obj['label']] == 'table column header']
|
| 98 |
+
supercells = [obj for obj in objects_in_table if class_names[obj['label']] == 'table spanning cell']
|
| 99 |
+
for obj in supercells:
|
| 100 |
+
obj['subheader'] = False
|
| 101 |
+
subheaders = [obj for obj in objects_in_table if class_names[obj['label']] == 'table projected row header']
|
| 102 |
+
for obj in subheaders:
|
| 103 |
+
obj['subheader'] = True
|
| 104 |
+
supercells += subheaders
|
| 105 |
+
for obj in rows:
|
| 106 |
+
obj['header'] = False
|
| 107 |
+
for header_obj in headers:
|
| 108 |
+
if iob(obj['bbox'], header_obj['bbox']) >= 0.5:
|
| 109 |
+
obj['header'] = True
|
| 110 |
+
|
| 111 |
+
for row in rows:
|
| 112 |
+
row['page'] = page_num
|
| 113 |
+
|
| 114 |
+
for column in columns:
|
| 115 |
+
column['page'] = page_num
|
| 116 |
+
|
| 117 |
+
#Refine table structures
|
| 118 |
+
rows = refine_rows(rows, tokens_in_table, class_thresholds['table row'])
|
| 119 |
+
columns = refine_columns(columns, tokens_in_table, class_thresholds['table column'])
|
| 120 |
+
|
| 121 |
+
# Shrink table bbox to just the total height of the rows
|
| 122 |
+
# and the total width of the columns
|
| 123 |
+
row_rect = Rect()
|
| 124 |
+
for obj in rows:
|
| 125 |
+
row_rect.include_rect(obj['bbox'])
|
| 126 |
+
column_rect = Rect()
|
| 127 |
+
for obj in columns:
|
| 128 |
+
column_rect.include_rect(obj['bbox'])
|
| 129 |
+
table_object['row_column_bbox'] = [column_rect[0], row_rect[1], column_rect[2], row_rect[3]]
|
| 130 |
+
table_object['bbox'] = table_object['row_column_bbox']
|
| 131 |
+
|
| 132 |
+
# Process the rows and columns into a complete segmented table
|
| 133 |
+
columns = align_columns(columns, table_object['row_column_bbox'])
|
| 134 |
+
rows = align_rows(rows, table_object['row_column_bbox'])
|
| 135 |
+
|
| 136 |
+
table_structures['rows'] = rows
|
| 137 |
+
table_structures['columns'] = columns
|
| 138 |
+
table_structures['headers'] = headers
|
| 139 |
+
table_structures['supercells'] = supercells
|
| 140 |
+
|
| 141 |
+
if len(rows) > 0 and len(columns) > 1:
|
| 142 |
+
table_structures = refine_table_structures(table_object['bbox'], table_structures, tokens_in_table, class_thresholds)
|
| 143 |
+
|
| 144 |
+
return table_structures
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def refine_rows(rows, page_spans, score_threshold):
|
| 148 |
+
"""
|
| 149 |
+
Apply operations to the detected rows, such as
|
| 150 |
+
thresholding, NMS, and alignment.
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
rows = nms_by_containment(rows, page_spans, overlap_threshold=0.5)
|
| 154 |
+
# remove_objects_without_content(page_spans, rows) # TODO
|
| 155 |
+
if len(rows) > 1:
|
| 156 |
+
rows = sort_objects_top_to_bottom(rows)
|
| 157 |
+
|
| 158 |
+
return rows
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def refine_columns(columns, page_spans, score_threshold):
|
| 162 |
+
"""
|
| 163 |
+
Apply operations to the detected columns, such as
|
| 164 |
+
thresholding, NMS, and alignment.
|
| 165 |
+
"""
|
| 166 |
+
|
| 167 |
+
columns = nms_by_containment(columns, page_spans, overlap_threshold=0.5)
|
| 168 |
+
# remove_objects_without_content(page_spans, columns) # TODO
|
| 169 |
+
if len(columns) > 1:
|
| 170 |
+
columns = sort_objects_left_to_right(columns)
|
| 171 |
+
|
| 172 |
+
return columns
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def nms_by_containment(container_objects, package_objects, overlap_threshold=0.5):
|
| 176 |
+
"""
|
| 177 |
+
Non-maxima suppression (NMS) of objects based on shared containment of other objects.
|
| 178 |
+
"""
|
| 179 |
+
container_objects = sort_objects_by_score(container_objects)
|
| 180 |
+
num_objects = len(container_objects)
|
| 181 |
+
suppression = [False for obj in container_objects]
|
| 182 |
+
|
| 183 |
+
packages_by_container, _, _ = slot_into_containers(container_objects, package_objects, overlap_threshold=overlap_threshold,
|
| 184 |
+
unique_assignment=True, forced_assignment=False)
|
| 185 |
+
|
| 186 |
+
for object2_num in range(1, num_objects):
|
| 187 |
+
object2_packages = set(packages_by_container[object2_num])
|
| 188 |
+
if len(object2_packages) == 0:
|
| 189 |
+
suppression[object2_num] = True
|
| 190 |
+
for object1_num in range(object2_num):
|
| 191 |
+
if not suppression[object1_num]:
|
| 192 |
+
object1_packages = set(packages_by_container[object1_num])
|
| 193 |
+
if len(object2_packages.intersection(object1_packages)) > 0:
|
| 194 |
+
suppression[object2_num] = True
|
| 195 |
+
|
| 196 |
+
final_objects = [obj for idx, obj in enumerate(container_objects) if not suppression[idx]]
|
| 197 |
+
return final_objects
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def slot_into_containers(container_objects, package_objects, overlap_threshold=0.5,
|
| 201 |
+
unique_assignment=True, forced_assignment=False):
|
| 202 |
+
"""
|
| 203 |
+
Slot a collection of objects into the container they occupy most (the container which holds the largest fraction of the object).
|
| 204 |
+
"""
|
| 205 |
+
best_match_scores = []
|
| 206 |
+
|
| 207 |
+
container_assignments = [[] for container in container_objects]
|
| 208 |
+
package_assignments = [[] for package in package_objects]
|
| 209 |
+
|
| 210 |
+
if len(container_objects) == 0 or len(package_objects) == 0:
|
| 211 |
+
return container_assignments, package_assignments, best_match_scores
|
| 212 |
+
|
| 213 |
+
match_scores = defaultdict(dict)
|
| 214 |
+
for package_num, package in enumerate(package_objects):
|
| 215 |
+
match_scores = []
|
| 216 |
+
package_rect = Rect(package['bbox'])
|
| 217 |
+
package_area = package_rect.get_area() # getArea()
|
| 218 |
+
for container_num, container in enumerate(container_objects):
|
| 219 |
+
container_rect = Rect(container['bbox'])
|
| 220 |
+
intersect_area = container_rect.intersect(package['bbox']).get_area() # getArea()
|
| 221 |
+
overlap_fraction = intersect_area / package_area
|
| 222 |
+
match_scores.append({'container': container, 'container_num': container_num, 'score': overlap_fraction})
|
| 223 |
+
|
| 224 |
+
sorted_match_scores = sort_objects_by_score(match_scores)
|
| 225 |
+
|
| 226 |
+
best_match_score = sorted_match_scores[0]
|
| 227 |
+
best_match_scores.append(best_match_score['score'])
|
| 228 |
+
if forced_assignment or best_match_score['score'] >= overlap_threshold:
|
| 229 |
+
container_assignments[best_match_score['container_num']].append(package_num)
|
| 230 |
+
package_assignments[package_num].append(best_match_score['container_num'])
|
| 231 |
+
|
| 232 |
+
if not unique_assignment: # slot package into all eligible slots
|
| 233 |
+
for match_score in sorted_match_scores[1:]:
|
| 234 |
+
if match_score['score'] >= overlap_threshold:
|
| 235 |
+
container_assignments[match_score['container_num']].append(package_num)
|
| 236 |
+
package_assignments[package_num].append(match_score['container_num'])
|
| 237 |
+
else:
|
| 238 |
+
break
|
| 239 |
+
|
| 240 |
+
return container_assignments, package_assignments, best_match_scores
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def sort_objects_by_score(objects, reverse=True):
|
| 244 |
+
"""
|
| 245 |
+
Put any set of objects in order from high score to low score.
|
| 246 |
+
"""
|
| 247 |
+
if reverse:
|
| 248 |
+
sign = -1
|
| 249 |
+
else:
|
| 250 |
+
sign = 1
|
| 251 |
+
return sorted(objects, key=lambda k: sign*k['score'])
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def remove_objects_without_content(page_spans, objects):
|
| 255 |
+
"""
|
| 256 |
+
Remove any objects (these can be rows, columns, supercells, etc.) that don't
|
| 257 |
+
have any text associated with them.
|
| 258 |
+
"""
|
| 259 |
+
for obj in objects[:]:
|
| 260 |
+
object_text, _ = extract_text_inside_bbox(page_spans, obj['bbox'])
|
| 261 |
+
if len(object_text.strip()) == 0:
|
| 262 |
+
objects.remove(obj)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def extract_text_inside_bbox(spans, bbox):
|
| 266 |
+
"""
|
| 267 |
+
Extract the text inside a bounding box.
|
| 268 |
+
"""
|
| 269 |
+
bbox_spans = get_bbox_span_subset(spans, bbox)
|
| 270 |
+
bbox_text = extract_text_from_spans(bbox_spans, remove_integer_superscripts=True)
|
| 271 |
+
|
| 272 |
+
return bbox_text, bbox_spans
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
def get_bbox_span_subset(spans, bbox, threshold=0.5):
|
| 276 |
+
"""
|
| 277 |
+
Reduce the set of spans to those that fall within a bounding box.
|
| 278 |
+
|
| 279 |
+
threshold: the fraction of the span that must overlap with the bbox.
|
| 280 |
+
"""
|
| 281 |
+
span_subset = []
|
| 282 |
+
for span in spans:
|
| 283 |
+
if overlaps(span['bbox'], bbox, threshold):
|
| 284 |
+
span_subset.append(span)
|
| 285 |
+
return span_subset
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
def overlaps(bbox1, bbox2, threshold=0.5):
|
| 289 |
+
"""
|
| 290 |
+
Test if more than "threshold" fraction of bbox1 overlaps with bbox2.
|
| 291 |
+
"""
|
| 292 |
+
rect1 = Rect(list(bbox1))
|
| 293 |
+
area1 = rect1.get_area() # .getArea()
|
| 294 |
+
if area1 == 0:
|
| 295 |
+
return False
|
| 296 |
+
return rect1.intersect(list(bbox2)).get_area()/area1 >= threshold # getArea()
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def extract_text_from_spans(spans, join_with_space=True, remove_integer_superscripts=True):
|
| 300 |
+
"""
|
| 301 |
+
Convert a collection of page tokens/words/spans into a single text string.
|
| 302 |
+
"""
|
| 303 |
+
|
| 304 |
+
if join_with_space:
|
| 305 |
+
join_char = " "
|
| 306 |
+
else:
|
| 307 |
+
join_char = ""
|
| 308 |
+
spans_copy = spans[:]
|
| 309 |
+
|
| 310 |
+
if remove_integer_superscripts:
|
| 311 |
+
for span in spans:
|
| 312 |
+
flags = span['flags']
|
| 313 |
+
if flags & 2**0: # superscript flag
|
| 314 |
+
if is_int(span['text']):
|
| 315 |
+
spans_copy.remove(span)
|
| 316 |
+
else:
|
| 317 |
+
span['superscript'] = True
|
| 318 |
+
|
| 319 |
+
if len(spans_copy) == 0:
|
| 320 |
+
return ""
|
| 321 |
+
|
| 322 |
+
spans_copy.sort(key=lambda span: span['span_num'])
|
| 323 |
+
spans_copy.sort(key=lambda span: span['line_num'])
|
| 324 |
+
spans_copy.sort(key=lambda span: span['block_num'])
|
| 325 |
+
|
| 326 |
+
# Force the span at the end of every line within a block to have exactly one space
|
| 327 |
+
# unless the line ends with a space or ends with a non-space followed by a hyphen
|
| 328 |
+
line_texts = []
|
| 329 |
+
line_span_texts = [spans_copy[0]['text']]
|
| 330 |
+
for span1, span2 in zip(spans_copy[:-1], spans_copy[1:]):
|
| 331 |
+
if not span1['block_num'] == span2['block_num'] or not span1['line_num'] == span2['line_num']:
|
| 332 |
+
line_text = join_char.join(line_span_texts).strip()
|
| 333 |
+
if (len(line_text) > 0
|
| 334 |
+
and not line_text[-1] == ' '
|
| 335 |
+
and not (len(line_text) > 1 and line_text[-1] == "-" and not line_text[-2] == ' ')):
|
| 336 |
+
if not join_with_space:
|
| 337 |
+
line_text += ' '
|
| 338 |
+
line_texts.append(line_text)
|
| 339 |
+
line_span_texts = [span2['text']]
|
| 340 |
+
else:
|
| 341 |
+
line_span_texts.append(span2['text'])
|
| 342 |
+
line_text = join_char.join(line_span_texts)
|
| 343 |
+
line_texts.append(line_text)
|
| 344 |
+
|
| 345 |
+
return join_char.join(line_texts).strip()
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def sort_objects_left_to_right(objs):
|
| 349 |
+
"""
|
| 350 |
+
Put the objects in order from left to right.
|
| 351 |
+
"""
|
| 352 |
+
return sorted(objs, key=lambda k: k['bbox'][0] + k['bbox'][2])
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def sort_objects_top_to_bottom(objs):
|
| 356 |
+
"""
|
| 357 |
+
Put the objects in order from top to bottom.
|
| 358 |
+
"""
|
| 359 |
+
return sorted(objs, key=lambda k: k['bbox'][1] + k['bbox'][3])
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def align_columns(columns, bbox):
|
| 363 |
+
"""
|
| 364 |
+
For every column, align the top and bottom boundaries to the final
|
| 365 |
+
table bounding box.
|
| 366 |
+
"""
|
| 367 |
+
try:
|
| 368 |
+
for column in columns:
|
| 369 |
+
column['bbox'][1] = bbox[1]
|
| 370 |
+
column['bbox'][3] = bbox[3]
|
| 371 |
+
except Exception as err:
|
| 372 |
+
print("Could not align columns: {}".format(err))
|
| 373 |
+
pass
|
| 374 |
+
|
| 375 |
+
return columns
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
def align_rows(rows, bbox):
|
| 379 |
+
"""
|
| 380 |
+
For every row, align the left and right boundaries to the final
|
| 381 |
+
table bounding box.
|
| 382 |
+
"""
|
| 383 |
+
try:
|
| 384 |
+
for row in rows:
|
| 385 |
+
row['bbox'][0] = bbox[0]
|
| 386 |
+
row['bbox'][2] = bbox[2]
|
| 387 |
+
except Exception as err:
|
| 388 |
+
print("Could not align rows: {}".format(err))
|
| 389 |
+
pass
|
| 390 |
+
|
| 391 |
+
return rows
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
def refine_table_structures(table_bbox, table_structures, page_spans, class_thresholds):
|
| 395 |
+
"""
|
| 396 |
+
Apply operations to the detected table structure objects such as
|
| 397 |
+
thresholding, NMS, and alignment.
|
| 398 |
+
"""
|
| 399 |
+
rows = table_structures["rows"]
|
| 400 |
+
columns = table_structures['columns']
|
| 401 |
+
|
| 402 |
+
#columns = fill_column_gaps(columns, table_bbox)
|
| 403 |
+
#rows = fill_row_gaps(rows, table_bbox)
|
| 404 |
+
|
| 405 |
+
# Process the headers
|
| 406 |
+
headers = table_structures['headers']
|
| 407 |
+
headers = apply_threshold(headers, class_thresholds["table column header"])
|
| 408 |
+
headers = nms(headers)
|
| 409 |
+
headers = align_headers(headers, rows)
|
| 410 |
+
|
| 411 |
+
# Process supercells
|
| 412 |
+
supercells = [elem for elem in table_structures['supercells'] if not elem['subheader']]
|
| 413 |
+
subheaders = [elem for elem in table_structures['supercells'] if elem['subheader']]
|
| 414 |
+
supercells = apply_threshold(supercells, class_thresholds["table spanning cell"])
|
| 415 |
+
subheaders = apply_threshold(subheaders, class_thresholds["table projected row header"])
|
| 416 |
+
supercells += subheaders
|
| 417 |
+
# Align before NMS for supercells because alignment brings them into agreement
|
| 418 |
+
# with rows and columns first; if supercells still overlap after this operation,
|
| 419 |
+
# the threshold for NMS can basically be lowered to just above 0
|
| 420 |
+
supercells = align_supercells(supercells, rows, columns)
|
| 421 |
+
supercells = nms_supercells(supercells)
|
| 422 |
+
|
| 423 |
+
header_supercell_tree(supercells)
|
| 424 |
+
|
| 425 |
+
table_structures['columns'] = columns
|
| 426 |
+
table_structures['rows'] = rows
|
| 427 |
+
table_structures['supercells'] = supercells
|
| 428 |
+
table_structures['headers'] = headers
|
| 429 |
+
|
| 430 |
+
return table_structures
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
def nms(objects, match_criteria="object2_overlap", match_threshold=0.05, keep_metric="score", keep_higher=True):
|
| 434 |
+
"""
|
| 435 |
+
A customizable version of non-maxima suppression (NMS).
|
| 436 |
+
|
| 437 |
+
Default behavior: If a lower-confidence object overlaps more than 5% of its area
|
| 438 |
+
with a higher-confidence object, remove the lower-confidence object.
|
| 439 |
+
|
| 440 |
+
objects: set of dicts; each object dict must have a 'bbox' and a 'score' field
|
| 441 |
+
match_criteria: how to measure how much two objects "overlap"
|
| 442 |
+
match_threshold: the cutoff for determining that overlap requires suppression of one object
|
| 443 |
+
keep_metric: which metric to use to determine the object to keep
|
| 444 |
+
keep_higher: if True, keep the object with the higher metric; otherwise, keep the lower
|
| 445 |
+
"""
|
| 446 |
+
if len(objects) == 0:
|
| 447 |
+
return []
|
| 448 |
+
|
| 449 |
+
if keep_metric=="score":
|
| 450 |
+
objects = sort_objects_by_score(objects, reverse=keep_higher)
|
| 451 |
+
elif keep_metric=="area":
|
| 452 |
+
objects = sort_objects_by_area(objects, reverse=keep_higher)
|
| 453 |
+
|
| 454 |
+
num_objects = len(objects)
|
| 455 |
+
suppression = [False for obj in objects]
|
| 456 |
+
|
| 457 |
+
for object2_num in range(1, num_objects):
|
| 458 |
+
object2_rect = Rect(objects[object2_num]['bbox'])
|
| 459 |
+
object2_area = object2_rect.get_area() # .getArea()
|
| 460 |
+
for object1_num in range(object2_num):
|
| 461 |
+
if not suppression[object1_num]:
|
| 462 |
+
object1_rect = Rect(objects[object1_num]['bbox'])
|
| 463 |
+
object1_area = object1_rect.get_area() # .getArea()
|
| 464 |
+
intersect_area = object1_rect.intersect(object2_rect).get_area() # .getArea()
|
| 465 |
+
try:
|
| 466 |
+
if match_criteria=="object1_overlap":
|
| 467 |
+
metric = intersect_area / object1_area
|
| 468 |
+
elif match_criteria=="object2_overlap":
|
| 469 |
+
metric = intersect_area / object2_area
|
| 470 |
+
elif match_criteria=="iou":
|
| 471 |
+
metric = intersect_area / (object1_area + object2_area - intersect_area)
|
| 472 |
+
if metric >= match_threshold:
|
| 473 |
+
suppression[object2_num] = True
|
| 474 |
+
break
|
| 475 |
+
except Exception:
|
| 476 |
+
# Intended to recover from divide-by-zero
|
| 477 |
+
pass
|
| 478 |
+
|
| 479 |
+
return [obj for idx, obj in enumerate(objects) if not suppression[idx]]
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
def align_headers(headers, rows):
|
| 483 |
+
"""
|
| 484 |
+
Adjust the header boundary to be the convex hull of the rows it intersects
|
| 485 |
+
at least 50% of the height of.
|
| 486 |
+
|
| 487 |
+
For now, we are not supporting tables with multiple headers, so we need to
|
| 488 |
+
eliminate anything besides the top-most header.
|
| 489 |
+
"""
|
| 490 |
+
|
| 491 |
+
aligned_headers = []
|
| 492 |
+
|
| 493 |
+
for row in rows:
|
| 494 |
+
row['header'] = False
|
| 495 |
+
|
| 496 |
+
header_row_nums = []
|
| 497 |
+
for header in headers:
|
| 498 |
+
for row_num, row in enumerate(rows):
|
| 499 |
+
row_height = row['bbox'][3] - row['bbox'][1]
|
| 500 |
+
min_row_overlap = max(row['bbox'][1], header['bbox'][1])
|
| 501 |
+
max_row_overlap = min(row['bbox'][3], header['bbox'][3])
|
| 502 |
+
overlap_height = max_row_overlap - min_row_overlap
|
| 503 |
+
if overlap_height / row_height >= 0.5:
|
| 504 |
+
header_row_nums.append(row_num)
|
| 505 |
+
|
| 506 |
+
if len(header_row_nums) == 0:
|
| 507 |
+
return aligned_headers
|
| 508 |
+
|
| 509 |
+
header_rect = Rect()
|
| 510 |
+
if header_row_nums[0] > 0:
|
| 511 |
+
header_row_nums = list(range(header_row_nums[0]+1)) + header_row_nums
|
| 512 |
+
|
| 513 |
+
last_row_num = -1
|
| 514 |
+
for row_num in header_row_nums:
|
| 515 |
+
if row_num == last_row_num + 1:
|
| 516 |
+
row = rows[row_num]
|
| 517 |
+
row['header'] = True
|
| 518 |
+
header_rect = header_rect.include_rect(row['bbox'])
|
| 519 |
+
last_row_num = row_num
|
| 520 |
+
else:
|
| 521 |
+
# Break as soon as a non-header row is encountered.
|
| 522 |
+
# This ignores any subsequent rows in the table labeled as a header.
|
| 523 |
+
# Having more than 1 header is not supported currently.
|
| 524 |
+
break
|
| 525 |
+
|
| 526 |
+
header = {'bbox': list(header_rect)}
|
| 527 |
+
aligned_headers.append(header)
|
| 528 |
+
|
| 529 |
+
return aligned_headers
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
def align_supercells(supercells, rows, columns):
|
| 533 |
+
"""
|
| 534 |
+
For each supercell, align it to the rows it intersects 50% of the height of,
|
| 535 |
+
and the columns it intersects 50% of the width of.
|
| 536 |
+
Eliminate supercells for which there are no rows and columns it intersects 50% with.
|
| 537 |
+
"""
|
| 538 |
+
aligned_supercells = []
|
| 539 |
+
|
| 540 |
+
for supercell in supercells:
|
| 541 |
+
supercell['header'] = False
|
| 542 |
+
row_bbox_rect = None
|
| 543 |
+
col_bbox_rect = None
|
| 544 |
+
intersecting_header_rows = set()
|
| 545 |
+
intersecting_data_rows = set()
|
| 546 |
+
for row_num, row in enumerate(rows):
|
| 547 |
+
row_height = row['bbox'][3] - row['bbox'][1]
|
| 548 |
+
supercell_height = supercell['bbox'][3] - supercell['bbox'][1]
|
| 549 |
+
min_row_overlap = max(row['bbox'][1], supercell['bbox'][1])
|
| 550 |
+
max_row_overlap = min(row['bbox'][3], supercell['bbox'][3])
|
| 551 |
+
overlap_height = max_row_overlap - min_row_overlap
|
| 552 |
+
if 'span' in supercell:
|
| 553 |
+
overlap_fraction = max(overlap_height/row_height,
|
| 554 |
+
overlap_height/supercell_height)
|
| 555 |
+
else:
|
| 556 |
+
overlap_fraction = overlap_height / row_height
|
| 557 |
+
if overlap_fraction >= 0.5:
|
| 558 |
+
if 'header' in row and row['header']:
|
| 559 |
+
intersecting_header_rows.add(row_num)
|
| 560 |
+
else:
|
| 561 |
+
intersecting_data_rows.add(row_num)
|
| 562 |
+
|
| 563 |
+
# Supercell cannot span across the header boundary; eliminate whichever
|
| 564 |
+
# group of rows is the smallest
|
| 565 |
+
supercell['header'] = False
|
| 566 |
+
if len(intersecting_data_rows) > 0 and len(intersecting_header_rows) > 0:
|
| 567 |
+
if len(intersecting_data_rows) > len(intersecting_header_rows):
|
| 568 |
+
intersecting_header_rows = set()
|
| 569 |
+
else:
|
| 570 |
+
intersecting_data_rows = set()
|
| 571 |
+
if len(intersecting_header_rows) > 0:
|
| 572 |
+
supercell['header'] = True
|
| 573 |
+
elif 'span' in supercell:
|
| 574 |
+
continue # Require span supercell to be in the header
|
| 575 |
+
intersecting_rows = intersecting_data_rows.union(intersecting_header_rows)
|
| 576 |
+
# Determine vertical span of aligned supercell
|
| 577 |
+
for row_num in intersecting_rows:
|
| 578 |
+
if row_bbox_rect is None:
|
| 579 |
+
row_bbox_rect = Rect(rows[row_num]['bbox'])
|
| 580 |
+
else:
|
| 581 |
+
row_bbox_rect = row_bbox_rect.include_rect(rows[row_num]['bbox'])
|
| 582 |
+
if row_bbox_rect is None:
|
| 583 |
+
continue
|
| 584 |
+
|
| 585 |
+
intersecting_cols = []
|
| 586 |
+
for col_num, col in enumerate(columns):
|
| 587 |
+
col_width = col['bbox'][2] - col['bbox'][0]
|
| 588 |
+
supercell_width = supercell['bbox'][2] - supercell['bbox'][0]
|
| 589 |
+
min_col_overlap = max(col['bbox'][0], supercell['bbox'][0])
|
| 590 |
+
max_col_overlap = min(col['bbox'][2], supercell['bbox'][2])
|
| 591 |
+
overlap_width = max_col_overlap - min_col_overlap
|
| 592 |
+
if 'span' in supercell:
|
| 593 |
+
overlap_fraction = max(overlap_width/col_width,
|
| 594 |
+
overlap_width/supercell_width)
|
| 595 |
+
# Multiply by 2 effectively lowers the threshold to 0.25
|
| 596 |
+
if supercell['header']:
|
| 597 |
+
overlap_fraction = overlap_fraction * 2
|
| 598 |
+
else:
|
| 599 |
+
overlap_fraction = overlap_width / col_width
|
| 600 |
+
if overlap_fraction >= 0.5:
|
| 601 |
+
intersecting_cols.append(col_num)
|
| 602 |
+
if col_bbox_rect is None:
|
| 603 |
+
col_bbox_rect = Rect(col['bbox'])
|
| 604 |
+
else:
|
| 605 |
+
col_bbox_rect = col_bbox_rect.include_rect(col['bbox'])
|
| 606 |
+
if col_bbox_rect is None:
|
| 607 |
+
continue
|
| 608 |
+
|
| 609 |
+
supercell_bbox = list(row_bbox_rect.intersect(col_bbox_rect))
|
| 610 |
+
supercell['bbox'] = supercell_bbox
|
| 611 |
+
|
| 612 |
+
# Only a true supercell if it joins across multiple rows or columns
|
| 613 |
+
if (len(intersecting_rows) > 0 and len(intersecting_cols) > 0
|
| 614 |
+
and (len(intersecting_rows) > 1 or len(intersecting_cols) > 1)):
|
| 615 |
+
supercell['row_numbers'] = list(intersecting_rows)
|
| 616 |
+
supercell['column_numbers'] = intersecting_cols
|
| 617 |
+
aligned_supercells.append(supercell)
|
| 618 |
+
|
| 619 |
+
# A span supercell in the header means there must be supercells above it in the header
|
| 620 |
+
if 'span' in supercell and supercell['header'] and len(supercell['column_numbers']) > 1:
|
| 621 |
+
for row_num in range(0, min(supercell['row_numbers'])):
|
| 622 |
+
new_supercell = {'row_numbers': [row_num], 'column_numbers': supercell['column_numbers'],
|
| 623 |
+
'score': supercell['score'], 'propagated': True}
|
| 624 |
+
new_supercell_columns = [columns[idx] for idx in supercell['column_numbers']]
|
| 625 |
+
new_supercell_rows = [rows[idx] for idx in supercell['row_numbers']]
|
| 626 |
+
bbox = [min([column['bbox'][0] for column in new_supercell_columns]),
|
| 627 |
+
min([row['bbox'][1] for row in new_supercell_rows]),
|
| 628 |
+
max([column['bbox'][2] for column in new_supercell_columns]),
|
| 629 |
+
max([row['bbox'][3] for row in new_supercell_rows])]
|
| 630 |
+
new_supercell['bbox'] = bbox
|
| 631 |
+
aligned_supercells.append(new_supercell)
|
| 632 |
+
|
| 633 |
+
return aligned_supercells
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
def nms_supercells(supercells):
|
| 637 |
+
"""
|
| 638 |
+
A NMS scheme for supercells that first attempts to shrink supercells to
|
| 639 |
+
resolve overlap.
|
| 640 |
+
If two supercells overlap the same (sub)cell, shrink the lower confidence
|
| 641 |
+
supercell to resolve the overlap. If shrunk supercell is empty, remove it.
|
| 642 |
+
"""
|
| 643 |
+
|
| 644 |
+
supercells = sort_objects_by_score(supercells)
|
| 645 |
+
num_supercells = len(supercells)
|
| 646 |
+
suppression = [False for supercell in supercells]
|
| 647 |
+
|
| 648 |
+
for supercell2_num in range(1, num_supercells):
|
| 649 |
+
supercell2 = supercells[supercell2_num]
|
| 650 |
+
for supercell1_num in range(supercell2_num):
|
| 651 |
+
supercell1 = supercells[supercell1_num]
|
| 652 |
+
remove_supercell_overlap(supercell1, supercell2)
|
| 653 |
+
if ((len(supercell2['row_numbers']) < 2 and len(supercell2['column_numbers']) < 2)
|
| 654 |
+
or len(supercell2['row_numbers']) == 0 or len(supercell2['column_numbers']) == 0):
|
| 655 |
+
suppression[supercell2_num] = True
|
| 656 |
+
|
| 657 |
+
return [obj for idx, obj in enumerate(supercells) if not suppression[idx]]
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
def header_supercell_tree(supercells):
|
| 661 |
+
"""
|
| 662 |
+
Make sure no supercell in the header is below more than one supercell in any row above it.
|
| 663 |
+
The cells in the header form a tree, but a supercell with more than one supercell in a row
|
| 664 |
+
above it means that some cell has more than one parent, which is not allowed. Eliminate
|
| 665 |
+
any supercell that would cause this to be violated.
|
| 666 |
+
"""
|
| 667 |
+
header_supercells = [supercell for supercell in supercells if 'header' in supercell and supercell['header']]
|
| 668 |
+
header_supercells = sort_objects_by_score(header_supercells)
|
| 669 |
+
|
| 670 |
+
for header_supercell in header_supercells[:]:
|
| 671 |
+
ancestors_by_row = defaultdict(int)
|
| 672 |
+
min_row = min(header_supercell['row_numbers'])
|
| 673 |
+
for header_supercell2 in header_supercells:
|
| 674 |
+
max_row2 = max(header_supercell2['row_numbers'])
|
| 675 |
+
if max_row2 < min_row:
|
| 676 |
+
if (set(header_supercell['column_numbers']).issubset(
|
| 677 |
+
set(header_supercell2['column_numbers']))):
|
| 678 |
+
for row2 in header_supercell2['row_numbers']:
|
| 679 |
+
ancestors_by_row[row2] += 1
|
| 680 |
+
for row in range(0, min_row):
|
| 681 |
+
if not ancestors_by_row[row] == 1:
|
| 682 |
+
supercells.remove(header_supercell)
|
| 683 |
+
break
|
| 684 |
+
|
| 685 |
+
|
| 686 |
+
def table_structure_to_cells(table_structures, table_spans, table_bbox):
|
| 687 |
+
"""
|
| 688 |
+
Assuming the row, column, supercell, and header bounding boxes have
|
| 689 |
+
been refined into a set of consistent table structures, process these
|
| 690 |
+
table structures into table cells. This is a universal representation
|
| 691 |
+
format for the table, which can later be exported to Pandas or CSV formats.
|
| 692 |
+
Classify the cells as header/access cells or data cells
|
| 693 |
+
based on if they intersect with the header bounding box.
|
| 694 |
+
"""
|
| 695 |
+
columns = table_structures['columns']
|
| 696 |
+
rows = table_structures['rows']
|
| 697 |
+
supercells = table_structures['supercells']
|
| 698 |
+
cells = []
|
| 699 |
+
subcells = []
|
| 700 |
+
|
| 701 |
+
# Identify complete cells and subcells
|
| 702 |
+
for column_num, column in enumerate(columns):
|
| 703 |
+
for row_num, row in enumerate(rows):
|
| 704 |
+
column_rect = Rect(list(column['bbox']))
|
| 705 |
+
row_rect = Rect(list(row['bbox']))
|
| 706 |
+
cell_rect = row_rect.intersect(column_rect)
|
| 707 |
+
header = 'header' in row and row['header']
|
| 708 |
+
cell = {'bbox': list(cell_rect), 'column_nums': [column_num], 'row_nums': [row_num],
|
| 709 |
+
'header': header}
|
| 710 |
+
|
| 711 |
+
cell['subcell'] = False
|
| 712 |
+
for supercell in supercells:
|
| 713 |
+
supercell_rect = Rect(list(supercell['bbox']))
|
| 714 |
+
if (supercell_rect.intersect(cell_rect).get_area() # .getArea()
|
| 715 |
+
/ cell_rect.get_area()) > 0.5: # getArea()
|
| 716 |
+
cell['subcell'] = True
|
| 717 |
+
break
|
| 718 |
+
|
| 719 |
+
if cell['subcell']:
|
| 720 |
+
subcells.append(cell)
|
| 721 |
+
else:
|
| 722 |
+
#cell_text = extract_text_inside_bbox(table_spans, cell['bbox'])
|
| 723 |
+
#cell['cell_text'] = cell_text
|
| 724 |
+
cell['subheader'] = False
|
| 725 |
+
cells.append(cell)
|
| 726 |
+
|
| 727 |
+
for supercell in supercells:
|
| 728 |
+
supercell_rect = Rect(list(supercell['bbox']))
|
| 729 |
+
cell_columns = set()
|
| 730 |
+
cell_rows = set()
|
| 731 |
+
cell_rect = None
|
| 732 |
+
header = True
|
| 733 |
+
for subcell in subcells:
|
| 734 |
+
subcell_rect = Rect(list(subcell['bbox']))
|
| 735 |
+
subcell_rect_area = subcell_rect.get_area() # .getArea()
|
| 736 |
+
if (subcell_rect.intersect(supercell_rect).get_area() # .getArea()
|
| 737 |
+
/ subcell_rect_area) > 0.5:
|
| 738 |
+
if cell_rect is None:
|
| 739 |
+
cell_rect = Rect(list(subcell['bbox']))
|
| 740 |
+
else:
|
| 741 |
+
cell_rect.include_rect(Rect(list(subcell['bbox'])))
|
| 742 |
+
cell_rows = cell_rows.union(set(subcell['row_nums']))
|
| 743 |
+
cell_columns = cell_columns.union(set(subcell['column_nums']))
|
| 744 |
+
# By convention here, all subcells must be classified
|
| 745 |
+
# as header cells for a supercell to be classified as a header cell;
|
| 746 |
+
# otherwise, this could lead to a non-rectangular header region
|
| 747 |
+
header = header and 'header' in subcell and subcell['header']
|
| 748 |
+
if len(cell_rows) > 0 and len(cell_columns) > 0:
|
| 749 |
+
cell = {'bbox': list(cell_rect), 'column_nums': list(cell_columns), 'row_nums': list(cell_rows),
|
| 750 |
+
'header': header, 'subheader': supercell['subheader']}
|
| 751 |
+
cells.append(cell)
|
| 752 |
+
|
| 753 |
+
# Compute a confidence score based on how well the page tokens
|
| 754 |
+
# slot into the cells reported by the model
|
| 755 |
+
_, _, cell_match_scores = slot_into_containers(cells, table_spans)
|
| 756 |
+
try:
|
| 757 |
+
mean_match_score = sum(cell_match_scores) / len(cell_match_scores)
|
| 758 |
+
min_match_score = min(cell_match_scores)
|
| 759 |
+
confidence_score = (mean_match_score + min_match_score)/2
|
| 760 |
+
except:
|
| 761 |
+
confidence_score = 0
|
| 762 |
+
|
| 763 |
+
# Dilate rows and columns before final extraction
|
| 764 |
+
#dilated_columns = fill_column_gaps(columns, table_bbox)
|
| 765 |
+
dilated_columns = columns
|
| 766 |
+
#dilated_rows = fill_row_gaps(rows, table_bbox)
|
| 767 |
+
dilated_rows = rows
|
| 768 |
+
for cell in cells:
|
| 769 |
+
column_rect = Rect()
|
| 770 |
+
for column_num in cell['column_nums']:
|
| 771 |
+
column_rect.include_rect(list(dilated_columns[column_num]['bbox']))
|
| 772 |
+
row_rect = Rect()
|
| 773 |
+
for row_num in cell['row_nums']:
|
| 774 |
+
row_rect.include_rect(list(dilated_rows[row_num]['bbox']))
|
| 775 |
+
cell_rect = column_rect.intersect(row_rect)
|
| 776 |
+
cell['bbox'] = list(cell_rect)
|
| 777 |
+
|
| 778 |
+
span_nums_by_cell, _, _ = slot_into_containers(cells, table_spans, overlap_threshold=0.001,
|
| 779 |
+
unique_assignment=True, forced_assignment=False)
|
| 780 |
+
|
| 781 |
+
for cell, cell_span_nums in zip(cells, span_nums_by_cell):
|
| 782 |
+
cell_spans = [table_spans[num] for num in cell_span_nums]
|
| 783 |
+
# TODO: Refine how text is extracted; should be character-based, not span-based;
|
| 784 |
+
# but need to associate
|
| 785 |
+
# cell['cell_text'] = extract_text_from_spans(cell_spans, remove_integer_superscripts=False) # TODO
|
| 786 |
+
cell['spans'] = cell_spans
|
| 787 |
+
|
| 788 |
+
# Adjust the row, column, and cell bounding boxes to reflect the extracted text
|
| 789 |
+
num_rows = len(rows)
|
| 790 |
+
rows = sort_objects_top_to_bottom(rows)
|
| 791 |
+
num_columns = len(columns)
|
| 792 |
+
columns = sort_objects_left_to_right(columns)
|
| 793 |
+
min_y_values_by_row = defaultdict(list)
|
| 794 |
+
max_y_values_by_row = defaultdict(list)
|
| 795 |
+
min_x_values_by_column = defaultdict(list)
|
| 796 |
+
max_x_values_by_column = defaultdict(list)
|
| 797 |
+
for cell in cells:
|
| 798 |
+
min_row = min(cell["row_nums"])
|
| 799 |
+
max_row = max(cell["row_nums"])
|
| 800 |
+
min_column = min(cell["column_nums"])
|
| 801 |
+
max_column = max(cell["column_nums"])
|
| 802 |
+
for span in cell['spans']:
|
| 803 |
+
min_x_values_by_column[min_column].append(span['bbox'][0])
|
| 804 |
+
min_y_values_by_row[min_row].append(span['bbox'][1])
|
| 805 |
+
max_x_values_by_column[max_column].append(span['bbox'][2])
|
| 806 |
+
max_y_values_by_row[max_row].append(span['bbox'][3])
|
| 807 |
+
for row_num, row in enumerate(rows):
|
| 808 |
+
if len(min_x_values_by_column[0]) > 0:
|
| 809 |
+
row['bbox'][0] = min(min_x_values_by_column[0])
|
| 810 |
+
if len(min_y_values_by_row[row_num]) > 0:
|
| 811 |
+
row['bbox'][1] = min(min_y_values_by_row[row_num])
|
| 812 |
+
if len(max_x_values_by_column[num_columns-1]) > 0:
|
| 813 |
+
row['bbox'][2] = max(max_x_values_by_column[num_columns-1])
|
| 814 |
+
if len(max_y_values_by_row[row_num]) > 0:
|
| 815 |
+
row['bbox'][3] = max(max_y_values_by_row[row_num])
|
| 816 |
+
for column_num, column in enumerate(columns):
|
| 817 |
+
if len(min_x_values_by_column[column_num]) > 0:
|
| 818 |
+
column['bbox'][0] = min(min_x_values_by_column[column_num])
|
| 819 |
+
if len(min_y_values_by_row[0]) > 0:
|
| 820 |
+
column['bbox'][1] = min(min_y_values_by_row[0])
|
| 821 |
+
if len(max_x_values_by_column[column_num]) > 0:
|
| 822 |
+
column['bbox'][2] = max(max_x_values_by_column[column_num])
|
| 823 |
+
if len(max_y_values_by_row[num_rows-1]) > 0:
|
| 824 |
+
column['bbox'][3] = max(max_y_values_by_row[num_rows-1])
|
| 825 |
+
for cell in cells:
|
| 826 |
+
row_rect = Rect()
|
| 827 |
+
column_rect = Rect()
|
| 828 |
+
for row_num in cell['row_nums']:
|
| 829 |
+
row_rect.include_rect(list(rows[row_num]['bbox']))
|
| 830 |
+
for column_num in cell['column_nums']:
|
| 831 |
+
column_rect.include_rect(list(columns[column_num]['bbox']))
|
| 832 |
+
cell_rect = row_rect.intersect(column_rect)
|
| 833 |
+
if cell_rect.get_area() > 0: # getArea()
|
| 834 |
+
cell['bbox'] = list(cell_rect)
|
| 835 |
+
pass
|
| 836 |
+
|
| 837 |
+
return cells, confidence_score
|
| 838 |
+
|
| 839 |
+
|
| 840 |
+
def remove_supercell_overlap(supercell1, supercell2):
|
| 841 |
+
"""
|
| 842 |
+
This function resolves overlap between supercells (supercells must be
|
| 843 |
+
disjoint) by iteratively shrinking supercells by the fewest grid cells
|
| 844 |
+
necessary to resolve the overlap.
|
| 845 |
+
Example:
|
| 846 |
+
If two supercells overlap at grid cell (R, C), and supercell #1 is less
|
| 847 |
+
confident than supercell #2, we eliminate either row R from supercell #1
|
| 848 |
+
or column C from supercell #1 by comparing the number of columns in row R
|
| 849 |
+
versus the number of rows in column C. If the number of columns in row R
|
| 850 |
+
is less than the number of rows in column C, we eliminate row R from
|
| 851 |
+
supercell #1. This resolves the overlap by removing fewer grid cells from
|
| 852 |
+
supercell #1 than if we eliminated column C from it.
|
| 853 |
+
"""
|
| 854 |
+
common_rows = set(supercell1['row_numbers']).intersection(set(supercell2['row_numbers']))
|
| 855 |
+
common_columns = set(supercell1['column_numbers']).intersection(set(supercell2['column_numbers']))
|
| 856 |
+
|
| 857 |
+
# While the supercells have overlapping grid cells, continue shrinking the less-confident
|
| 858 |
+
# supercell one row or one column at a time
|
| 859 |
+
while len(common_rows) > 0 and len(common_columns) > 0:
|
| 860 |
+
# Try to shrink the supercell as little as possible to remove the overlap;
|
| 861 |
+
# if the supercell has fewer rows than columns, remove an overlapping column,
|
| 862 |
+
# because this removes fewer grid cells from the supercell;
|
| 863 |
+
# otherwise remove an overlapping row
|
| 864 |
+
if len(supercell2['row_numbers']) < len(supercell2['column_numbers']):
|
| 865 |
+
min_column = min(supercell2['column_numbers'])
|
| 866 |
+
max_column = max(supercell2['column_numbers'])
|
| 867 |
+
if max_column in common_columns:
|
| 868 |
+
common_columns.remove(max_column)
|
| 869 |
+
supercell2['column_numbers'].remove(max_column)
|
| 870 |
+
elif min_column in common_columns:
|
| 871 |
+
common_columns.remove(min_column)
|
| 872 |
+
supercell2['column_numbers'].remove(min_column)
|
| 873 |
+
else:
|
| 874 |
+
supercell2['column_numbers'] = []
|
| 875 |
+
common_columns = set()
|
| 876 |
+
else:
|
| 877 |
+
min_row = min(supercell2['row_numbers'])
|
| 878 |
+
max_row = max(supercell2['row_numbers'])
|
| 879 |
+
if max_row in common_rows:
|
| 880 |
+
common_rows.remove(max_row)
|
| 881 |
+
supercell2['row_numbers'].remove(max_row)
|
| 882 |
+
elif min_row in common_rows:
|
| 883 |
+
common_rows.remove(min_row)
|
| 884 |
+
supercell2['row_numbers'].remove(min_row)
|
| 885 |
+
else:
|
| 886 |
+
supercell2['row_numbers'] = []
|
| 887 |
+
common_rows = set()
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
#git+https://github.com/nielsrogge/transformers.git@convert_table_transformer_new_checkpoints
|
| 3 |
+
transformers
|
| 4 |
+
easyocr
|
| 5 |
+
matplotlib
|
| 6 |
+
Pillow
|
| 7 |
+
pandas
|
| 8 |
+
ultralytics
|
| 9 |
+
PyMuPDF
|
| 10 |
+
opencv-python
|
| 11 |
+
gradio
|
| 12 |
+
paddlepaddle-gpu
|
| 13 |
+
paddleocr
|
tatr-app.py
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
import matplotlib.patches as patches
|
| 3 |
+
from matplotlib.patches import Patch
|
| 4 |
+
import io
|
| 5 |
+
from PIL import Image, ImageDraw
|
| 6 |
+
import numpy as np
|
| 7 |
+
import csv
|
| 8 |
+
import pandas as pd
|
| 9 |
+
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
|
| 12 |
+
from transformers import AutoModelForObjectDetection
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
import easyocr
|
| 16 |
+
|
| 17 |
+
import gradio as gr
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class MaxResize(object):
|
| 24 |
+
def __init__(self, max_size=800):
|
| 25 |
+
self.max_size = max_size
|
| 26 |
+
|
| 27 |
+
def __call__(self, image):
|
| 28 |
+
width, height = image.size
|
| 29 |
+
current_max_size = max(width, height)
|
| 30 |
+
scale = self.max_size / current_max_size
|
| 31 |
+
resized_image = image.resize((int(round(scale*width)), int(round(scale*height))))
|
| 32 |
+
|
| 33 |
+
return resized_image
|
| 34 |
+
|
| 35 |
+
detection_transform = transforms.Compose([
|
| 36 |
+
MaxResize(800),
|
| 37 |
+
transforms.ToTensor(),
|
| 38 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 39 |
+
])
|
| 40 |
+
|
| 41 |
+
structure_transform = transforms.Compose([
|
| 42 |
+
MaxResize(1000),
|
| 43 |
+
transforms.ToTensor(),
|
| 44 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 45 |
+
])
|
| 46 |
+
|
| 47 |
+
# load table detection model
|
| 48 |
+
# processor = TableTransformerImageProcessor(max_size=800)
|
| 49 |
+
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm").to(device)
|
| 50 |
+
|
| 51 |
+
# load table structure recognition model
|
| 52 |
+
# structure_processor = TableTransformerImageProcessor(max_size=1000)
|
| 53 |
+
structure_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all").to(device)
|
| 54 |
+
|
| 55 |
+
# load EasyOCR reader
|
| 56 |
+
reader = easyocr.Reader(['en'])
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# for output bounding box post-processing
|
| 60 |
+
def box_cxcywh_to_xyxy(x):
|
| 61 |
+
x_c, y_c, w, h = x.unbind(-1)
|
| 62 |
+
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
|
| 63 |
+
return torch.stack(b, dim=1)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def rescale_bboxes(out_bbox, size):
|
| 67 |
+
width, height = size
|
| 68 |
+
boxes = box_cxcywh_to_xyxy(out_bbox)
|
| 69 |
+
boxes = boxes * torch.tensor([width, height, width, height], dtype=torch.float32)
|
| 70 |
+
return boxes
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def outputs_to_objects(outputs, img_size, id2label):
|
| 74 |
+
m = outputs.logits.softmax(-1).max(-1)
|
| 75 |
+
pred_labels = list(m.indices.detach().cpu().numpy())[0]
|
| 76 |
+
pred_scores = list(m.values.detach().cpu().numpy())[0]
|
| 77 |
+
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0]
|
| 78 |
+
pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)]
|
| 79 |
+
|
| 80 |
+
objects = []
|
| 81 |
+
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes):
|
| 82 |
+
class_label = id2label[int(label)]
|
| 83 |
+
if not class_label == 'no object':
|
| 84 |
+
objects.append({'label': class_label, 'score': float(score),
|
| 85 |
+
'bbox': [float(elem) for elem in bbox]})
|
| 86 |
+
|
| 87 |
+
return objects
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def fig2img(fig):
|
| 91 |
+
"""Convert a Matplotlib figure to a PIL Image and return it"""
|
| 92 |
+
buf = io.BytesIO()
|
| 93 |
+
fig.savefig(buf)
|
| 94 |
+
buf.seek(0)
|
| 95 |
+
image = Image.open(buf)
|
| 96 |
+
return image
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def visualize_detected_tables(img, det_tables):
|
| 100 |
+
plt.imshow(img, interpolation="lanczos")
|
| 101 |
+
fig = plt.gcf()
|
| 102 |
+
fig.set_size_inches(20, 20)
|
| 103 |
+
ax = plt.gca()
|
| 104 |
+
|
| 105 |
+
for det_table in det_tables:
|
| 106 |
+
bbox = det_table['bbox']
|
| 107 |
+
|
| 108 |
+
if det_table['label'] == 'table':
|
| 109 |
+
facecolor = (1, 0, 0.45)
|
| 110 |
+
edgecolor = (1, 0, 0.45)
|
| 111 |
+
alpha = 0.3
|
| 112 |
+
linewidth = 2
|
| 113 |
+
hatch='//////'
|
| 114 |
+
elif det_table['label'] == 'table rotated':
|
| 115 |
+
facecolor = (0.95, 0.6, 0.1)
|
| 116 |
+
edgecolor = (0.95, 0.6, 0.1)
|
| 117 |
+
alpha = 0.3
|
| 118 |
+
linewidth = 2
|
| 119 |
+
hatch='//////'
|
| 120 |
+
else:
|
| 121 |
+
continue
|
| 122 |
+
|
| 123 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
|
| 124 |
+
edgecolor='none',facecolor=facecolor, alpha=0.1)
|
| 125 |
+
ax.add_patch(rect)
|
| 126 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
|
| 127 |
+
edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha)
|
| 128 |
+
ax.add_patch(rect)
|
| 129 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0,
|
| 130 |
+
edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2)
|
| 131 |
+
ax.add_patch(rect)
|
| 132 |
+
|
| 133 |
+
plt.xticks([], [])
|
| 134 |
+
plt.yticks([], [])
|
| 135 |
+
|
| 136 |
+
legend_elements = [Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45),
|
| 137 |
+
label='Table', hatch='//////', alpha=0.3),
|
| 138 |
+
Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1),
|
| 139 |
+
label='Table (rotated)', hatch='//////', alpha=0.3)]
|
| 140 |
+
plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0,
|
| 141 |
+
fontsize=10, ncol=2)
|
| 142 |
+
plt.gcf().set_size_inches(10, 10)
|
| 143 |
+
plt.axis('off')
|
| 144 |
+
|
| 145 |
+
return fig
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def detect_and_crop_table(image):
|
| 149 |
+
# prepare image for the model
|
| 150 |
+
# pixel_values = processor(image, return_tensors="pt").pixel_values
|
| 151 |
+
pixel_values = detection_transform(image).unsqueeze(0).to(device)
|
| 152 |
+
|
| 153 |
+
# forward pass
|
| 154 |
+
with torch.no_grad():
|
| 155 |
+
outputs = model(pixel_values)
|
| 156 |
+
|
| 157 |
+
# postprocess to get detected tables
|
| 158 |
+
id2label = model.config.id2label
|
| 159 |
+
id2label[len(model.config.id2label)] = "no object"
|
| 160 |
+
detected_tables = outputs_to_objects(outputs, image.size, id2label)
|
| 161 |
+
|
| 162 |
+
# visualize
|
| 163 |
+
# fig = visualize_detected_tables(image, detected_tables)
|
| 164 |
+
# image = fig2img(fig)
|
| 165 |
+
|
| 166 |
+
# crop first detected table out of image
|
| 167 |
+
cropped_table = image.crop(detected_tables[0]["bbox"])
|
| 168 |
+
|
| 169 |
+
return cropped_table
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def recognize_table(image):
|
| 173 |
+
# prepare image for the model
|
| 174 |
+
# pixel_values = structure_processor(images=image, return_tensors="pt").pixel_values
|
| 175 |
+
pixel_values = structure_transform(image).unsqueeze(0).to(device)
|
| 176 |
+
|
| 177 |
+
# forward pass
|
| 178 |
+
with torch.no_grad():
|
| 179 |
+
outputs = structure_model(pixel_values)
|
| 180 |
+
|
| 181 |
+
# postprocess to get individual elements
|
| 182 |
+
id2label = structure_model.config.id2label
|
| 183 |
+
id2label[len(structure_model.config.id2label)] = "no object"
|
| 184 |
+
cells = outputs_to_objects(outputs, image.size, id2label)
|
| 185 |
+
|
| 186 |
+
# visualize cells on cropped table
|
| 187 |
+
draw = ImageDraw.Draw(image)
|
| 188 |
+
|
| 189 |
+
for cell in cells:
|
| 190 |
+
draw.rectangle(cell["bbox"], outline="red")
|
| 191 |
+
|
| 192 |
+
return image, cells
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def get_cell_coordinates_by_row(table_data):
|
| 196 |
+
# Extract rows and columns
|
| 197 |
+
rows = [entry for entry in table_data if entry['label'] == 'table row']
|
| 198 |
+
columns = [entry for entry in table_data if entry['label'] == 'table column']
|
| 199 |
+
|
| 200 |
+
# Sort rows and columns by their Y and X coordinates, respectively
|
| 201 |
+
rows.sort(key=lambda x: x['bbox'][1])
|
| 202 |
+
columns.sort(key=lambda x: x['bbox'][0])
|
| 203 |
+
|
| 204 |
+
# Function to find cell coordinates
|
| 205 |
+
def find_cell_coordinates(row, column):
|
| 206 |
+
cell_bbox = [column['bbox'][0], row['bbox'][1], column['bbox'][2], row['bbox'][3]]
|
| 207 |
+
return cell_bbox
|
| 208 |
+
|
| 209 |
+
# Generate cell coordinates and count cells in each row
|
| 210 |
+
cell_coordinates = []
|
| 211 |
+
|
| 212 |
+
for row in rows:
|
| 213 |
+
row_cells = []
|
| 214 |
+
for column in columns:
|
| 215 |
+
cell_bbox = find_cell_coordinates(row, column)
|
| 216 |
+
row_cells.append({'column': column['bbox'], 'cell': cell_bbox})
|
| 217 |
+
|
| 218 |
+
# Sort cells in the row by X coordinate
|
| 219 |
+
row_cells.sort(key=lambda x: x['column'][0])
|
| 220 |
+
|
| 221 |
+
# Append row information to cell_coordinates
|
| 222 |
+
cell_coordinates.append({'row': row['bbox'], 'cells': row_cells, 'cell_count': len(row_cells)})
|
| 223 |
+
|
| 224 |
+
# Sort rows from top to bottom
|
| 225 |
+
cell_coordinates.sort(key=lambda x: x['row'][1])
|
| 226 |
+
|
| 227 |
+
return cell_coordinates
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def apply_ocr(cell_coordinates, cropped_table):
|
| 231 |
+
# let's OCR row by row
|
| 232 |
+
data = dict()
|
| 233 |
+
max_num_columns = 0
|
| 234 |
+
for idx, row in enumerate(cell_coordinates):
|
| 235 |
+
row_text = []
|
| 236 |
+
for cell in row["cells"]:
|
| 237 |
+
# crop cell out of image
|
| 238 |
+
cell_image = np.array(cropped_table.crop(cell["cell"]))
|
| 239 |
+
# apply OCR
|
| 240 |
+
result = reader.readtext(np.array(cell_image))
|
| 241 |
+
if len(result) > 0:
|
| 242 |
+
text = " ".join([x[1] for x in result])
|
| 243 |
+
row_text.append(text)
|
| 244 |
+
|
| 245 |
+
if len(row_text) > max_num_columns:
|
| 246 |
+
max_num_columns = len(row_text)
|
| 247 |
+
|
| 248 |
+
data[str(idx)] = row_text
|
| 249 |
+
|
| 250 |
+
# pad rows which don't have max_num_columns elements
|
| 251 |
+
# to make sure all rows have the same number of columns
|
| 252 |
+
for idx, row_data in data.copy().items():
|
| 253 |
+
if len(row_data) != max_num_columns:
|
| 254 |
+
row_data = row_data + ["" for _ in range(max_num_columns - len(row_data))]
|
| 255 |
+
data[str(idx)] = row_data
|
| 256 |
+
|
| 257 |
+
# write to csv
|
| 258 |
+
with open('output.csv','w') as result_file:
|
| 259 |
+
wr = csv.writer(result_file, dialect='excel')
|
| 260 |
+
|
| 261 |
+
for row, row_text in data.items():
|
| 262 |
+
wr.writerow(row_text)
|
| 263 |
+
|
| 264 |
+
# return as Pandas dataframe
|
| 265 |
+
df = pd.read_csv('output.csv')
|
| 266 |
+
|
| 267 |
+
return df, data
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def process_pdf(image):
|
| 271 |
+
cropped_table = detect_and_crop_table(image)
|
| 272 |
+
|
| 273 |
+
image, cells = recognize_table(cropped_table)
|
| 274 |
+
|
| 275 |
+
cell_coordinates = get_cell_coordinates_by_row(cells)
|
| 276 |
+
|
| 277 |
+
df, data = apply_ocr(cell_coordinates, image)
|
| 278 |
+
|
| 279 |
+
return image, df, data
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
title = "Demo: table detection & recognition with Table Transformer (TATR)."
|
| 283 |
+
description = """Demo for table extraction with the Table Transformer. First, table detection is performed on the input image using https://huggingface.co/microsoft/table-transformer-detection,
|
| 284 |
+
after which the detected table is extracted and https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-all is leveraged to recognize the individual rows, columns and cells. OCR is then performed per cell, row by row."""
|
| 285 |
+
examples = [['image.png'], ['mistral_paper.png']]
|
| 286 |
+
|
| 287 |
+
app = gr.Interface(fn=process_pdf,
|
| 288 |
+
inputs=gr.Image(type="pil"),
|
| 289 |
+
outputs=[gr.Image(type="pil", label="Detected table"), gr.Dataframe(label="Table as CSV"), gr.JSON(label="Data as JSON")],
|
| 290 |
+
title=title,
|
| 291 |
+
description=description,
|
| 292 |
+
examples=examples)
|
| 293 |
+
app.queue()
|
| 294 |
+
app.launch(debug=True)
|
yolov8/runs/detect/yolov8s-custom-detection/weights/best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d7c77d9723839f582e02377794dccee2ed745f72e08f4818d1ed5a7f7c3e591
|
| 3 |
+
size 22520345
|
yolov8/runs/detect/yolov8s-custom-structure-all/weights/best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:41877a8b980bd7c28139c267b3c3b1f0ffefb6babeaee8340c1680d2d623a794
|
| 3 |
+
size 22527577
|