| import argparse | |
| import logging | |
| import os | |
| import pprint | |
| import random | |
| import warnings | |
| import numpy as np | |
| import torch | |
| import torch.backends.cudnn as cudnn | |
| import torch.distributed as dist | |
| from torch.utils.data import DataLoader | |
| from torch.optim import AdamW | |
| import torch.nn.functional as F | |
| from torch.utils.tensorboard import SummaryWriter | |
| from dataset.hypersim import Hypersim | |
| from dataset.kitti import KITTI | |
| from dataset.vkitti2 import VKITTI2 | |
| from depth_anything_v2.dpt import DepthAnythingV2 | |
| from util.dist_helper import setup_distributed | |
| from util.loss import SiLogLoss | |
| from util.metric import eval_depth | |
| from util.utils import init_log | |
| parser = argparse.ArgumentParser(description='Depth Anything V2 for Metric Depth Estimation') | |
| parser.add_argument('--encoder', default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg']) | |
| parser.add_argument('--dataset', default='hypersim', choices=['hypersim', 'vkitti']) | |
| parser.add_argument('--img-size', default=518, type=int) | |
| parser.add_argument('--min-depth', default=0.001, type=float) | |
| parser.add_argument('--max-depth', default=20, type=float) | |
| parser.add_argument('--epochs', default=40, type=int) | |
| parser.add_argument('--bs', default=2, type=int) | |
| parser.add_argument('--lr', default=0.000005, type=float) | |
| parser.add_argument('--pretrained-from', type=str) | |
| parser.add_argument('--save-path', type=str, required=True) | |
| parser.add_argument('--local-rank', default=0, type=int) | |
| parser.add_argument('--port', default=None, type=int) | |
| def main(): | |
| args = parser.parse_args() | |
| warnings.simplefilter('ignore', np.RankWarning) | |
| logger = init_log('global', logging.INFO) | |
| logger.propagate = 0 | |
| rank, world_size = setup_distributed(port=args.port) | |
| if rank == 0: | |
| all_args = {**vars(args), 'ngpus': world_size} | |
| logger.info('{}\n'.format(pprint.pformat(all_args))) | |
| writer = SummaryWriter(args.save_path) | |
| cudnn.enabled = True | |
| cudnn.benchmark = True | |
| size = (args.img_size, args.img_size) | |
| if args.dataset == 'hypersim': | |
| trainset = Hypersim('dataset/splits/hypersim/train.txt', 'train', size=size) | |
| elif args.dataset == 'vkitti': | |
| trainset = VKITTI2('dataset/splits/vkitti2/train.txt', 'train', size=size) | |
| else: | |
| raise NotImplementedError | |
| trainsampler = torch.utils.data.distributed.DistributedSampler(trainset) | |
| trainloader = DataLoader(trainset, batch_size=args.bs, pin_memory=True, num_workers=4, drop_last=True, sampler=trainsampler) | |
| if args.dataset == 'hypersim': | |
| valset = Hypersim('dataset/splits/hypersim/val.txt', 'val', size=size) | |
| elif args.dataset == 'vkitti': | |
| valset = KITTI('dataset/splits/kitti/val.txt', 'val', size=size) | |
| else: | |
| raise NotImplementedError | |
| valsampler = torch.utils.data.distributed.DistributedSampler(valset) | |
| valloader = DataLoader(valset, batch_size=1, pin_memory=True, num_workers=4, drop_last=True, sampler=valsampler) | |
| local_rank = int(os.environ["LOCAL_RANK"]) | |
| model_configs = { | |
| 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
| 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
| 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
| 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
| } | |
| model = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth}) | |
| if args.pretrained_from: | |
| model.load_state_dict({k: v for k, v in torch.load(args.pretrained_from, map_location='cpu').items() if 'pretrained' in k}, strict=False) | |
| model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) | |
| model.cuda(local_rank) | |
| model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], broadcast_buffers=False, | |
| output_device=local_rank, find_unused_parameters=True) | |
| criterion = SiLogLoss().cuda(local_rank) | |
| optimizer = AdamW([{'params': [param for name, param in model.named_parameters() if 'pretrained' in name], 'lr': args.lr}, | |
| {'params': [param for name, param in model.named_parameters() if 'pretrained' not in name], 'lr': args.lr * 10.0}], | |
| lr=args.lr, betas=(0.9, 0.999), weight_decay=0.01) | |
| total_iters = args.epochs * len(trainloader) | |
| previous_best = {'d1': 0, 'd2': 0, 'd3': 0, 'abs_rel': 100, 'sq_rel': 100, 'rmse': 100, 'rmse_log': 100, 'log10': 100, 'silog': 100} | |
| for epoch in range(args.epochs): | |
| if rank == 0: | |
| logger.info('===========> Epoch: {:}/{:}, d1: {:.3f}, d2: {:.3f}, d3: {:.3f}'.format(epoch, args.epochs, previous_best['d1'], previous_best['d2'], previous_best['d3'])) | |
| logger.info('===========> Epoch: {:}/{:}, abs_rel: {:.3f}, sq_rel: {:.3f}, rmse: {:.3f}, rmse_log: {:.3f}, ' | |
| 'log10: {:.3f}, silog: {:.3f}'.format( | |
| epoch, args.epochs, previous_best['abs_rel'], previous_best['sq_rel'], previous_best['rmse'], | |
| previous_best['rmse_log'], previous_best['log10'], previous_best['silog'])) | |
| trainloader.sampler.set_epoch(epoch + 1) | |
| model.train() | |
| total_loss = 0 | |
| for i, sample in enumerate(trainloader): | |
| optimizer.zero_grad() | |
| img, depth, valid_mask = sample['image'].cuda(), sample['depth'].cuda(), sample['valid_mask'].cuda() | |
| if random.random() < 0.5: | |
| img = img.flip(-1) | |
| depth = depth.flip(-1) | |
| valid_mask = valid_mask.flip(-1) | |
| pred = model(img) | |
| loss = criterion(pred, depth, (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth)) | |
| loss.backward() | |
| optimizer.step() | |
| total_loss += loss.item() | |
| iters = epoch * len(trainloader) + i | |
| lr = args.lr * (1 - iters / total_iters) ** 0.9 | |
| optimizer.param_groups[0]["lr"] = lr | |
| optimizer.param_groups[1]["lr"] = lr * 10.0 | |
| if rank == 0: | |
| writer.add_scalar('train/loss', loss.item(), iters) | |
| if rank == 0 and i % 100 == 0: | |
| logger.info('Iter: {}/{}, LR: {:.7f}, Loss: {:.3f}'.format(i, len(trainloader), optimizer.param_groups[0]['lr'], loss.item())) | |
| model.eval() | |
| results = {'d1': torch.tensor([0.0]).cuda(), 'd2': torch.tensor([0.0]).cuda(), 'd3': torch.tensor([0.0]).cuda(), | |
| 'abs_rel': torch.tensor([0.0]).cuda(), 'sq_rel': torch.tensor([0.0]).cuda(), 'rmse': torch.tensor([0.0]).cuda(), | |
| 'rmse_log': torch.tensor([0.0]).cuda(), 'log10': torch.tensor([0.0]).cuda(), 'silog': torch.tensor([0.0]).cuda()} | |
| nsamples = torch.tensor([0.0]).cuda() | |
| for i, sample in enumerate(valloader): | |
| img, depth, valid_mask = sample['image'].cuda().float(), sample['depth'].cuda()[0], sample['valid_mask'].cuda()[0] | |
| with torch.no_grad(): | |
| pred = model(img) | |
| pred = F.interpolate(pred[:, None], depth.shape[-2:], mode='bilinear', align_corners=True)[0, 0] | |
| valid_mask = (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth) | |
| if valid_mask.sum() < 10: | |
| continue | |
| cur_results = eval_depth(pred[valid_mask], depth[valid_mask]) | |
| for k in results.keys(): | |
| results[k] += cur_results[k] | |
| nsamples += 1 | |
| torch.distributed.barrier() | |
| for k in results.keys(): | |
| dist.reduce(results[k], dst=0) | |
| dist.reduce(nsamples, dst=0) | |
| if rank == 0: | |
| logger.info('==========================================================================================') | |
| logger.info('{:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}'.format(*tuple(results.keys()))) | |
| logger.info('{:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}'.format(*tuple([(v / nsamples).item() for v in results.values()]))) | |
| logger.info('==========================================================================================') | |
| print() | |
| for name, metric in results.items(): | |
| writer.add_scalar(f'eval/{name}', (metric / nsamples).item(), epoch) | |
| for k in results.keys(): | |
| if k in ['d1', 'd2', 'd3']: | |
| previous_best[k] = max(previous_best[k], (results[k] / nsamples).item()) | |
| else: | |
| previous_best[k] = min(previous_best[k], (results[k] / nsamples).item()) | |
| if rank == 0: | |
| checkpoint = { | |
| 'model': model.state_dict(), | |
| 'optimizer': optimizer.state_dict(), | |
| 'epoch': epoch, | |
| 'previous_best': previous_best, | |
| } | |
| torch.save(checkpoint, os.path.join(args.save_path, 'latest.pth')) | |
| if __name__ == '__main__': | |
| main() |