| import torch | |
| def eval_depth(pred, target): | |
| assert pred.shape == target.shape | |
| thresh = torch.max((target / pred), (pred / target)) | |
| d1 = torch.sum(thresh < 1.25).float() / len(thresh) | |
| d2 = torch.sum(thresh < 1.25 ** 2).float() / len(thresh) | |
| d3 = torch.sum(thresh < 1.25 ** 3).float() / len(thresh) | |
| diff = pred - target | |
| diff_log = torch.log(pred) - torch.log(target) | |
| abs_rel = torch.mean(torch.abs(diff) / target) | |
| sq_rel = torch.mean(torch.pow(diff, 2) / target) | |
| rmse = torch.sqrt(torch.mean(torch.pow(diff, 2))) | |
| rmse_log = torch.sqrt(torch.mean(torch.pow(diff_log , 2))) | |
| log10 = torch.mean(torch.abs(torch.log10(pred) - torch.log10(target))) | |
| silog = torch.sqrt(torch.pow(diff_log, 2).mean() - 0.5 * torch.pow(diff_log.mean(), 2)) | |
| return {'d1': d1.item(), 'd2': d2.item(), 'd3': d3.item(), 'abs_rel': abs_rel.item(), 'sq_rel': sq_rel.item(), | |
| 'rmse': rmse.item(), 'rmse_log': rmse_log.item(), 'log10':log10.item(), 'silog':silog.item()} |