linoyts HF Staff commited on
Commit
748e90c
·
verified ·
1 Parent(s): c2755f2

Upload 3 files

Browse files
qwenimage/__init__.py ADDED
File without changes
qwenimage/qwen_fa3_processor.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Paired with a good language model. Thanks!
3
+ """
4
+
5
+ import torch
6
+ from typing import Optional, Tuple
7
+ from diffusers.models.transformers.transformer_qwenimage import apply_rotary_emb_qwen
8
+
9
+ try:
10
+ from kernels import get_kernel
11
+ _k = get_kernel("kernels-community/vllm-flash-attn3")
12
+ _flash_attn_func = _k.flash_attn_func
13
+ except Exception as e:
14
+ _flash_attn_func = None
15
+ _kernels_err = e
16
+
17
+
18
+ def _ensure_fa3_available():
19
+ if _flash_attn_func is None:
20
+ raise ImportError(
21
+ "FlashAttention-3 via Hugging Face `kernels` is required. "
22
+ "Tried `get_kernel('kernels-community/vllm-flash-attn3')` and failed with:\n"
23
+ f"{_kernels_err}"
24
+ )
25
+
26
+ @torch.library.custom_op("flash::flash_attn_func", mutates_args=())
27
+ def flash_attn_func(
28
+ q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, causal: bool = False
29
+ ) -> torch.Tensor:
30
+ outputs, lse = _flash_attn_func(q, k, v, causal=causal)
31
+ return outputs
32
+
33
+ @flash_attn_func.register_fake
34
+ def _(q, k, v, **kwargs):
35
+ # two outputs:
36
+ # 1. output: (batch, seq_len, num_heads, head_dim)
37
+ # 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32
38
+ meta_q = torch.empty_like(q).contiguous()
39
+ return meta_q #, q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32)
40
+
41
+
42
+ class QwenDoubleStreamAttnProcessorFA3:
43
+ """
44
+ FA3-based attention processor for Qwen double-stream architecture.
45
+ Computes joint attention over concatenated [text, image] streams using vLLM FlashAttention-3
46
+ accessed via Hugging Face `kernels`.
47
+
48
+ Notes / limitations:
49
+ - General attention masks are not supported here (FA3 path). `is_causal=False` and no arbitrary mask.
50
+ - Optional windowed attention / sink tokens / softcap can be plumbed through if you use those features.
51
+ - Expects an available `apply_rotary_emb_qwen` in scope (same as your non-FA3 processor).
52
+ """
53
+
54
+ _attention_backend = "fa3" # for parity with your other processors, not used internally
55
+
56
+ def __init__(self):
57
+ _ensure_fa3_available()
58
+
59
+ @torch.no_grad()
60
+ def __call__(
61
+ self,
62
+ attn, # Attention module with to_q/to_k/to_v/add_*_proj, norms, to_out, to_add_out, and .heads
63
+ hidden_states: torch.FloatTensor, # (B, S_img, D_model) image stream
64
+ encoder_hidden_states: torch.FloatTensor = None, # (B, S_txt, D_model) text stream
65
+ encoder_hidden_states_mask: torch.FloatTensor = None, # unused in FA3 path
66
+ attention_mask: Optional[torch.FloatTensor] = None, # unused in FA3 path
67
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # (img_freqs, txt_freqs)
68
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
69
+ if encoder_hidden_states is None:
70
+ raise ValueError("QwenDoubleStreamAttnProcessorFA3 requires encoder_hidden_states (text stream).")
71
+ if attention_mask is not None:
72
+ # FA3 kernel path here does not consume arbitrary masks; fail fast to avoid silent correctness issues.
73
+ raise NotImplementedError("attention_mask is not supported in this FA3 implementation.")
74
+
75
+ _ensure_fa3_available()
76
+
77
+ B, S_img, _ = hidden_states.shape
78
+ S_txt = encoder_hidden_states.shape[1]
79
+
80
+ # ---- QKV projections (image/sample stream) ----
81
+ img_q = attn.to_q(hidden_states) # (B, S_img, D)
82
+ img_k = attn.to_k(hidden_states)
83
+ img_v = attn.to_v(hidden_states)
84
+
85
+ # ---- QKV projections (text/context stream) ----
86
+ txt_q = attn.add_q_proj(encoder_hidden_states) # (B, S_txt, D)
87
+ txt_k = attn.add_k_proj(encoder_hidden_states)
88
+ txt_v = attn.add_v_proj(encoder_hidden_states)
89
+
90
+ # ---- Reshape to (B, S, H, D_h) ----
91
+ H = attn.heads
92
+ img_q = img_q.unflatten(-1, (H, -1))
93
+ img_k = img_k.unflatten(-1, (H, -1))
94
+ img_v = img_v.unflatten(-1, (H, -1))
95
+
96
+ txt_q = txt_q.unflatten(-1, (H, -1))
97
+ txt_k = txt_k.unflatten(-1, (H, -1))
98
+ txt_v = txt_v.unflatten(-1, (H, -1))
99
+
100
+ # ---- Q/K normalization (per your module contract) ----
101
+ if getattr(attn, "norm_q", None) is not None:
102
+ img_q = attn.norm_q(img_q)
103
+ if getattr(attn, "norm_k", None) is not None:
104
+ img_k = attn.norm_k(img_k)
105
+ if getattr(attn, "norm_added_q", None) is not None:
106
+ txt_q = attn.norm_added_q(txt_q)
107
+ if getattr(attn, "norm_added_k", None) is not None:
108
+ txt_k = attn.norm_added_k(txt_k)
109
+
110
+ # ---- RoPE (Qwen variant) ----
111
+ if image_rotary_emb is not None:
112
+ img_freqs, txt_freqs = image_rotary_emb
113
+ # expects tensors shaped (B, S, H, D_h)
114
+ img_q = apply_rotary_emb_qwen(img_q, img_freqs, use_real=False)
115
+ img_k = apply_rotary_emb_qwen(img_k, img_freqs, use_real=False)
116
+ txt_q = apply_rotary_emb_qwen(txt_q, txt_freqs, use_real=False)
117
+ txt_k = apply_rotary_emb_qwen(txt_k, txt_freqs, use_real=False)
118
+
119
+ # ---- Joint attention over [text, image] along sequence axis ----
120
+ # Shapes: (B, S_total, H, D_h)
121
+ q = torch.cat([txt_q, img_q], dim=1)
122
+ k = torch.cat([txt_k, img_k], dim=1)
123
+ v = torch.cat([txt_v, img_v], dim=1)
124
+
125
+ # FlashAttention-3 path expects (B, S, H, D_h) and returns (out, softmax_lse)
126
+ out = flash_attn_func(q, k, v, causal=False) # out: (B, S_total, H, D_h)
127
+
128
+ # ---- Back to (B, S, D_model) ----
129
+ out = out.flatten(2, 3).to(q.dtype)
130
+
131
+ # Split back to text / image segments
132
+ txt_attn_out = out[:, :S_txt, :]
133
+ img_attn_out = out[:, S_txt:, :]
134
+
135
+ # ---- Output projections ----
136
+ img_attn_out = attn.to_out[0](img_attn_out)
137
+ if len(attn.to_out) > 1:
138
+ img_attn_out = attn.to_out[1](img_attn_out) # dropout if present
139
+
140
+ txt_attn_out = attn.to_add_out(txt_attn_out)
141
+
142
+ return img_attn_out, txt_attn_out
qwenimage/transformer_qwenimage.py ADDED
@@ -0,0 +1,642 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import functools
16
+ import math
17
+ from typing import Any, Dict, List, Optional, Tuple, Union
18
+
19
+ import torch
20
+ import torch.nn as nn
21
+ import torch.nn.functional as F
22
+
23
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
24
+ from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
25
+ from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
26
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
27
+ from diffusers.models.attention import FeedForward, AttentionMixin
28
+ from diffusers.models.attention_dispatch import dispatch_attention_fn
29
+ from diffusers.models.attention_processor import Attention
30
+ from diffusers.models.cache_utils import CacheMixin
31
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps
32
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
33
+ from diffusers.models.modeling_utils import ModelMixin
34
+ from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
35
+
36
+
37
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
38
+
39
+
40
+ def get_timestep_embedding(
41
+ timesteps: torch.Tensor,
42
+ embedding_dim: int,
43
+ flip_sin_to_cos: bool = False,
44
+ downscale_freq_shift: float = 1,
45
+ scale: float = 1,
46
+ max_period: int = 10000,
47
+ ) -> torch.Tensor:
48
+ """
49
+ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
50
+
51
+ Args
52
+ timesteps (torch.Tensor):
53
+ a 1-D Tensor of N indices, one per batch element. These may be fractional.
54
+ embedding_dim (int):
55
+ the dimension of the output.
56
+ flip_sin_to_cos (bool):
57
+ Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
58
+ downscale_freq_shift (float):
59
+ Controls the delta between frequencies between dimensions
60
+ scale (float):
61
+ Scaling factor applied to the embeddings.
62
+ max_period (int):
63
+ Controls the maximum frequency of the embeddings
64
+ Returns
65
+ torch.Tensor: an [N x dim] Tensor of positional embeddings.
66
+ """
67
+ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
68
+
69
+ half_dim = embedding_dim // 2
70
+ exponent = -math.log(max_period) * torch.arange(
71
+ start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
72
+ )
73
+ exponent = exponent / (half_dim - downscale_freq_shift)
74
+
75
+ emb = torch.exp(exponent).to(timesteps.dtype)
76
+ emb = timesteps[:, None].float() * emb[None, :]
77
+
78
+ # scale embeddings
79
+ emb = scale * emb
80
+
81
+ # concat sine and cosine embeddings
82
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
83
+
84
+ # flip sine and cosine embeddings
85
+ if flip_sin_to_cos:
86
+ emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
87
+
88
+ # zero pad
89
+ if embedding_dim % 2 == 1:
90
+ emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
91
+ return emb
92
+
93
+
94
+ def apply_rotary_emb_qwen(
95
+ x: torch.Tensor,
96
+ freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
97
+ use_real: bool = True,
98
+ use_real_unbind_dim: int = -1,
99
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
100
+ """
101
+ Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
102
+ to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
103
+ reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
104
+ tensors contain rotary embeddings and are returned as real tensors.
105
+
106
+ Args:
107
+ x (`torch.Tensor`):
108
+ Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
109
+ freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
110
+
111
+ Returns:
112
+ Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
113
+ """
114
+ if use_real:
115
+ cos, sin = freqs_cis # [S, D]
116
+ cos = cos[None, None]
117
+ sin = sin[None, None]
118
+ cos, sin = cos.to(x.device), sin.to(x.device)
119
+
120
+ if use_real_unbind_dim == -1:
121
+ # Used for flux, cogvideox, hunyuan-dit
122
+ x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
123
+ x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
124
+ elif use_real_unbind_dim == -2:
125
+ # Used for Stable Audio, OmniGen, CogView4 and Cosmos
126
+ x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
127
+ x_rotated = torch.cat([-x_imag, x_real], dim=-1)
128
+ else:
129
+ raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
130
+
131
+ out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
132
+
133
+ return out
134
+ else:
135
+ x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
136
+ freqs_cis = freqs_cis.unsqueeze(1)
137
+ x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
138
+
139
+ return x_out.type_as(x)
140
+
141
+
142
+ class QwenTimestepProjEmbeddings(nn.Module):
143
+ def __init__(self, embedding_dim):
144
+ super().__init__()
145
+
146
+ self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
147
+ self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
148
+
149
+ def forward(self, timestep, hidden_states):
150
+ timesteps_proj = self.time_proj(timestep)
151
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) # (N, D)
152
+
153
+ conditioning = timesteps_emb
154
+
155
+ return conditioning
156
+
157
+
158
+ class QwenEmbedRope(nn.Module):
159
+ def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
160
+ super().__init__()
161
+ self.theta = theta
162
+ self.axes_dim = axes_dim
163
+ pos_index = torch.arange(4096)
164
+ neg_index = torch.arange(4096).flip(0) * -1 - 1
165
+ self.pos_freqs = torch.cat(
166
+ [
167
+ self.rope_params(pos_index, self.axes_dim[0], self.theta),
168
+ self.rope_params(pos_index, self.axes_dim[1], self.theta),
169
+ self.rope_params(pos_index, self.axes_dim[2], self.theta),
170
+ ],
171
+ dim=1,
172
+ )
173
+ self.neg_freqs = torch.cat(
174
+ [
175
+ self.rope_params(neg_index, self.axes_dim[0], self.theta),
176
+ self.rope_params(neg_index, self.axes_dim[1], self.theta),
177
+ self.rope_params(neg_index, self.axes_dim[2], self.theta),
178
+ ],
179
+ dim=1,
180
+ )
181
+ self.rope_cache = {}
182
+
183
+ # DO NOT USING REGISTER BUFFER HERE, IT WILL CAUSE COMPLEX NUMBERS LOSE ITS IMAGINARY PART
184
+ self.scale_rope = scale_rope
185
+
186
+ def rope_params(self, index, dim, theta=10000):
187
+ """
188
+ Args:
189
+ index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
190
+ """
191
+ assert dim % 2 == 0
192
+ freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
193
+ freqs = torch.polar(torch.ones_like(freqs), freqs)
194
+ return freqs
195
+
196
+ def forward(self, video_fhw, txt_seq_lens, device):
197
+ """
198
+ Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
199
+ txt_length: [bs] a list of 1 integers representing the length of the text
200
+ """
201
+ if self.pos_freqs.device != device:
202
+ self.pos_freqs = self.pos_freqs.to(device)
203
+ self.neg_freqs = self.neg_freqs.to(device)
204
+
205
+ if isinstance(video_fhw, list):
206
+ video_fhw = video_fhw[0]
207
+ if not isinstance(video_fhw, list):
208
+ video_fhw = [video_fhw]
209
+
210
+ vid_freqs = []
211
+ max_vid_index = 0
212
+ for idx, fhw in enumerate(video_fhw):
213
+ frame, height, width = fhw
214
+ rope_key = f"{idx}_{height}_{width}"
215
+
216
+ if not torch.compiler.is_compiling():
217
+ if rope_key not in self.rope_cache:
218
+ self.rope_cache[rope_key] = self._compute_video_freqs(frame, height, width, idx)
219
+ video_freq = self.rope_cache[rope_key]
220
+ else:
221
+ video_freq = self._compute_video_freqs(frame, height, width, idx)
222
+ video_freq = video_freq.to(device)
223
+ vid_freqs.append(video_freq)
224
+
225
+ if self.scale_rope:
226
+ max_vid_index = max(height // 2, width // 2, max_vid_index)
227
+ else:
228
+ max_vid_index = max(height, width, max_vid_index)
229
+
230
+ max_len = max(txt_seq_lens)
231
+ txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]
232
+ vid_freqs = torch.cat(vid_freqs, dim=0)
233
+
234
+ return vid_freqs, txt_freqs
235
+
236
+ @functools.lru_cache(maxsize=None)
237
+ def _compute_video_freqs(self, frame, height, width, idx=0):
238
+ seq_lens = frame * height * width
239
+ freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
240
+ freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
241
+
242
+ freqs_frame = freqs_pos[0][idx : idx + frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
243
+ if self.scale_rope:
244
+ freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
245
+ freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
246
+ freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
247
+ freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)
248
+ else:
249
+ freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
250
+ freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)
251
+
252
+ freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
253
+ return freqs.clone().contiguous()
254
+
255
+
256
+ class QwenDoubleStreamAttnProcessor2_0:
257
+ """
258
+ Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
259
+ implements joint attention computation where text and image streams are processed together.
260
+ """
261
+
262
+ _attention_backend = None
263
+
264
+ def __init__(self):
265
+ if not hasattr(F, "scaled_dot_product_attention"):
266
+ raise ImportError(
267
+ "QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
268
+ )
269
+
270
+ def __call__(
271
+ self,
272
+ attn: Attention,
273
+ hidden_states: torch.FloatTensor, # Image stream
274
+ encoder_hidden_states: torch.FloatTensor = None, # Text stream
275
+ encoder_hidden_states_mask: torch.FloatTensor = None,
276
+ attention_mask: Optional[torch.FloatTensor] = None,
277
+ image_rotary_emb: Optional[torch.Tensor] = None,
278
+ ) -> torch.FloatTensor:
279
+ if encoder_hidden_states is None:
280
+ raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
281
+
282
+ seq_txt = encoder_hidden_states.shape[1]
283
+
284
+ # Compute QKV for image stream (sample projections)
285
+ img_query = attn.to_q(hidden_states)
286
+ img_key = attn.to_k(hidden_states)
287
+ img_value = attn.to_v(hidden_states)
288
+
289
+ # Compute QKV for text stream (context projections)
290
+ txt_query = attn.add_q_proj(encoder_hidden_states)
291
+ txt_key = attn.add_k_proj(encoder_hidden_states)
292
+ txt_value = attn.add_v_proj(encoder_hidden_states)
293
+
294
+ # Reshape for multi-head attention
295
+ img_query = img_query.unflatten(-1, (attn.heads, -1))
296
+ img_key = img_key.unflatten(-1, (attn.heads, -1))
297
+ img_value = img_value.unflatten(-1, (attn.heads, -1))
298
+
299
+ txt_query = txt_query.unflatten(-1, (attn.heads, -1))
300
+ txt_key = txt_key.unflatten(-1, (attn.heads, -1))
301
+ txt_value = txt_value.unflatten(-1, (attn.heads, -1))
302
+
303
+ # Apply QK normalization
304
+ if attn.norm_q is not None:
305
+ img_query = attn.norm_q(img_query)
306
+ if attn.norm_k is not None:
307
+ img_key = attn.norm_k(img_key)
308
+ if attn.norm_added_q is not None:
309
+ txt_query = attn.norm_added_q(txt_query)
310
+ if attn.norm_added_k is not None:
311
+ txt_key = attn.norm_added_k(txt_key)
312
+
313
+ # Apply RoPE
314
+ if image_rotary_emb is not None:
315
+ img_freqs, txt_freqs = image_rotary_emb
316
+ img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
317
+ img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
318
+ txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
319
+ txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
320
+
321
+ # Concatenate for joint attention
322
+ # Order: [text, image]
323
+ joint_query = torch.cat([txt_query, img_query], dim=1)
324
+ joint_key = torch.cat([txt_key, img_key], dim=1)
325
+ joint_value = torch.cat([txt_value, img_value], dim=1)
326
+
327
+ # Compute joint attention
328
+ joint_hidden_states = dispatch_attention_fn(
329
+ joint_query,
330
+ joint_key,
331
+ joint_value,
332
+ attn_mask=attention_mask,
333
+ dropout_p=0.0,
334
+ is_causal=False,
335
+ backend=self._attention_backend,
336
+ )
337
+
338
+ # Reshape back
339
+ joint_hidden_states = joint_hidden_states.flatten(2, 3)
340
+ joint_hidden_states = joint_hidden_states.to(joint_query.dtype)
341
+
342
+ # Split attention outputs back
343
+ txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part
344
+ img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
345
+
346
+ # Apply output projections
347
+ img_attn_output = attn.to_out[0](img_attn_output)
348
+ if len(attn.to_out) > 1:
349
+ img_attn_output = attn.to_out[1](img_attn_output) # dropout
350
+
351
+ txt_attn_output = attn.to_add_out(txt_attn_output)
352
+
353
+ return img_attn_output, txt_attn_output
354
+
355
+
356
+ @maybe_allow_in_graph
357
+ class QwenImageTransformerBlock(nn.Module):
358
+ def __init__(
359
+ self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
360
+ ):
361
+ super().__init__()
362
+
363
+ self.dim = dim
364
+ self.num_attention_heads = num_attention_heads
365
+ self.attention_head_dim = attention_head_dim
366
+
367
+ # Image processing modules
368
+ self.img_mod = nn.Sequential(
369
+ nn.SiLU(),
370
+ nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
371
+ )
372
+ self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
373
+ self.attn = Attention(
374
+ query_dim=dim,
375
+ cross_attention_dim=None, # Enable cross attention for joint computation
376
+ added_kv_proj_dim=dim, # Enable added KV projections for text stream
377
+ dim_head=attention_head_dim,
378
+ heads=num_attention_heads,
379
+ out_dim=dim,
380
+ context_pre_only=False,
381
+ bias=True,
382
+ processor=QwenDoubleStreamAttnProcessor2_0(),
383
+ qk_norm=qk_norm,
384
+ eps=eps,
385
+ )
386
+ self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
387
+ self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
388
+
389
+ # Text processing modules
390
+ self.txt_mod = nn.Sequential(
391
+ nn.SiLU(),
392
+ nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
393
+ )
394
+ self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
395
+ # Text doesn't need separate attention - it's handled by img_attn joint computation
396
+ self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
397
+ self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
398
+
399
+ def _modulate(self, x, mod_params):
400
+ """Apply modulation to input tensor"""
401
+ shift, scale, gate = mod_params.chunk(3, dim=-1)
402
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
403
+
404
+ def forward(
405
+ self,
406
+ hidden_states: torch.Tensor,
407
+ encoder_hidden_states: torch.Tensor,
408
+ encoder_hidden_states_mask: torch.Tensor,
409
+ temb: torch.Tensor,
410
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
411
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
412
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
413
+ # Get modulation parameters for both streams
414
+ img_mod_params = self.img_mod(temb) # [B, 6*dim]
415
+ txt_mod_params = self.txt_mod(temb) # [B, 6*dim]
416
+
417
+ # Split modulation parameters for norm1 and norm2
418
+ img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
419
+ txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
420
+
421
+ # Process image stream - norm1 + modulation
422
+ img_normed = self.img_norm1(hidden_states)
423
+ img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
424
+
425
+ # Process text stream - norm1 + modulation
426
+ txt_normed = self.txt_norm1(encoder_hidden_states)
427
+ txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
428
+
429
+ # Use QwenAttnProcessor2_0 for joint attention computation
430
+ # This directly implements the DoubleStreamLayerMegatron logic:
431
+ # 1. Computes QKV for both streams
432
+ # 2. Applies QK normalization and RoPE
433
+ # 3. Concatenates and runs joint attention
434
+ # 4. Splits results back to separate streams
435
+ joint_attention_kwargs = joint_attention_kwargs or {}
436
+ attn_output = self.attn(
437
+ hidden_states=img_modulated, # Image stream (will be processed as "sample")
438
+ encoder_hidden_states=txt_modulated, # Text stream (will be processed as "context")
439
+ encoder_hidden_states_mask=encoder_hidden_states_mask,
440
+ image_rotary_emb=image_rotary_emb,
441
+ **joint_attention_kwargs,
442
+ )
443
+
444
+ # QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
445
+ img_attn_output, txt_attn_output = attn_output
446
+
447
+ # Apply attention gates and add residual (like in Megatron)
448
+ hidden_states = hidden_states + img_gate1 * img_attn_output
449
+ encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
450
+
451
+ # Process image stream - norm2 + MLP
452
+ img_normed2 = self.img_norm2(hidden_states)
453
+ img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
454
+ img_mlp_output = self.img_mlp(img_modulated2)
455
+ hidden_states = hidden_states + img_gate2 * img_mlp_output
456
+
457
+ # Process text stream - norm2 + MLP
458
+ txt_normed2 = self.txt_norm2(encoder_hidden_states)
459
+ txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
460
+ txt_mlp_output = self.txt_mlp(txt_modulated2)
461
+ encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output
462
+
463
+ # Clip to prevent overflow for fp16
464
+ if encoder_hidden_states.dtype == torch.float16:
465
+ encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
466
+ if hidden_states.dtype == torch.float16:
467
+ hidden_states = hidden_states.clip(-65504, 65504)
468
+
469
+ return encoder_hidden_states, hidden_states
470
+
471
+
472
+ class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin, AttentionMixin):
473
+ """
474
+ The Transformer model introduced in Qwen.
475
+
476
+ Args:
477
+ patch_size (`int`, defaults to `2`):
478
+ Patch size to turn the input data into small patches.
479
+ in_channels (`int`, defaults to `64`):
480
+ The number of channels in the input.
481
+ out_channels (`int`, *optional*, defaults to `None`):
482
+ The number of channels in the output. If not specified, it defaults to `in_channels`.
483
+ num_layers (`int`, defaults to `60`):
484
+ The number of layers of dual stream DiT blocks to use.
485
+ attention_head_dim (`int`, defaults to `128`):
486
+ The number of dimensions to use for each attention head.
487
+ num_attention_heads (`int`, defaults to `24`):
488
+ The number of attention heads to use.
489
+ joint_attention_dim (`int`, defaults to `3584`):
490
+ The number of dimensions to use for the joint attention (embedding/channel dimension of
491
+ `encoder_hidden_states`).
492
+ guidance_embeds (`bool`, defaults to `False`):
493
+ Whether to use guidance embeddings for guidance-distilled variant of the model.
494
+ axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
495
+ The dimensions to use for the rotary positional embeddings.
496
+ """
497
+
498
+ _supports_gradient_checkpointing = True
499
+ _no_split_modules = ["QwenImageTransformerBlock"]
500
+ _skip_layerwise_casting_patterns = ["pos_embed", "norm"]
501
+ _repeated_blocks = ["QwenImageTransformerBlock"]
502
+
503
+ @register_to_config
504
+ def __init__(
505
+ self,
506
+ patch_size: int = 2,
507
+ in_channels: int = 64,
508
+ out_channels: Optional[int] = 16,
509
+ num_layers: int = 60,
510
+ attention_head_dim: int = 128,
511
+ num_attention_heads: int = 24,
512
+ joint_attention_dim: int = 3584,
513
+ guidance_embeds: bool = False, # TODO: this should probably be removed
514
+ axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
515
+ ):
516
+ super().__init__()
517
+ self.out_channels = out_channels or in_channels
518
+ self.inner_dim = num_attention_heads * attention_head_dim
519
+
520
+ self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
521
+
522
+ self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
523
+
524
+ self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
525
+
526
+ self.img_in = nn.Linear(in_channels, self.inner_dim)
527
+ self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
528
+
529
+ self.transformer_blocks = nn.ModuleList(
530
+ [
531
+ QwenImageTransformerBlock(
532
+ dim=self.inner_dim,
533
+ num_attention_heads=num_attention_heads,
534
+ attention_head_dim=attention_head_dim,
535
+ )
536
+ for _ in range(num_layers)
537
+ ]
538
+ )
539
+
540
+ self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
541
+ self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
542
+
543
+ self.gradient_checkpointing = False
544
+
545
+ def forward(
546
+ self,
547
+ hidden_states: torch.Tensor,
548
+ encoder_hidden_states: torch.Tensor = None,
549
+ encoder_hidden_states_mask: torch.Tensor = None,
550
+ timestep: torch.LongTensor = None,
551
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
552
+ guidance: torch.Tensor = None, # TODO: this should probably be removed
553
+ attention_kwargs: Optional[Dict[str, Any]] = None,
554
+ return_dict: bool = True,
555
+ ) -> Union[torch.Tensor, Transformer2DModelOutput]:
556
+ """
557
+ The [`QwenTransformer2DModel`] forward method.
558
+
559
+ Args:
560
+ hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
561
+ Input `hidden_states`.
562
+ encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
563
+ Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
564
+ encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
565
+ Mask of the input conditions.
566
+ timestep ( `torch.LongTensor`):
567
+ Used to indicate denoising step.
568
+ attention_kwargs (`dict`, *optional*):
569
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
570
+ `self.processor` in
571
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
572
+ return_dict (`bool`, *optional*, defaults to `True`):
573
+ Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
574
+ tuple.
575
+
576
+ Returns:
577
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
578
+ `tuple` where the first element is the sample tensor.
579
+ """
580
+ if attention_kwargs is not None:
581
+ attention_kwargs = attention_kwargs.copy()
582
+ lora_scale = attention_kwargs.pop("scale", 1.0)
583
+ else:
584
+ lora_scale = 1.0
585
+
586
+ if USE_PEFT_BACKEND:
587
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
588
+ scale_lora_layers(self, lora_scale)
589
+ else:
590
+ if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
591
+ logger.warning(
592
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
593
+ )
594
+
595
+ hidden_states = self.img_in(hidden_states)
596
+
597
+ timestep = timestep.to(hidden_states.dtype)
598
+ encoder_hidden_states = self.txt_norm(encoder_hidden_states)
599
+ encoder_hidden_states = self.txt_in(encoder_hidden_states)
600
+
601
+ if guidance is not None:
602
+ guidance = guidance.to(hidden_states.dtype) * 1000
603
+
604
+ temb = (
605
+ self.time_text_embed(timestep, hidden_states)
606
+ if guidance is None
607
+ else self.time_text_embed(timestep, guidance, hidden_states)
608
+ )
609
+
610
+ for index_block, block in enumerate(self.transformer_blocks):
611
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
612
+ encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
613
+ block,
614
+ hidden_states,
615
+ encoder_hidden_states,
616
+ encoder_hidden_states_mask,
617
+ temb,
618
+ image_rotary_emb,
619
+ )
620
+
621
+ else:
622
+ encoder_hidden_states, hidden_states = block(
623
+ hidden_states=hidden_states,
624
+ encoder_hidden_states=encoder_hidden_states,
625
+ encoder_hidden_states_mask=encoder_hidden_states_mask,
626
+ temb=temb,
627
+ image_rotary_emb=image_rotary_emb,
628
+ joint_attention_kwargs=attention_kwargs,
629
+ )
630
+
631
+ # Use only the image part (hidden_states) from the dual-stream blocks
632
+ hidden_states = self.norm_out(hidden_states, temb)
633
+ output = self.proj_out(hidden_states)
634
+
635
+ if USE_PEFT_BACKEND:
636
+ # remove `lora_scale` from each PEFT layer
637
+ unscale_lora_layers(self, lora_scale)
638
+
639
+ if not return_dict:
640
+ return (output,)
641
+
642
+ return Transformer2DModelOutput(sample=output)