Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse files- qwenimage/__init__.py +0 -0
- qwenimage/qwen_fa3_processor.py +142 -0
- qwenimage/transformer_qwenimage.py +642 -0
qwenimage/__init__.py
ADDED
|
File without changes
|
qwenimage/qwen_fa3_processor.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Paired with a good language model. Thanks!
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from typing import Optional, Tuple
|
| 7 |
+
from diffusers.models.transformers.transformer_qwenimage import apply_rotary_emb_qwen
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
from kernels import get_kernel
|
| 11 |
+
_k = get_kernel("kernels-community/vllm-flash-attn3")
|
| 12 |
+
_flash_attn_func = _k.flash_attn_func
|
| 13 |
+
except Exception as e:
|
| 14 |
+
_flash_attn_func = None
|
| 15 |
+
_kernels_err = e
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def _ensure_fa3_available():
|
| 19 |
+
if _flash_attn_func is None:
|
| 20 |
+
raise ImportError(
|
| 21 |
+
"FlashAttention-3 via Hugging Face `kernels` is required. "
|
| 22 |
+
"Tried `get_kernel('kernels-community/vllm-flash-attn3')` and failed with:\n"
|
| 23 |
+
f"{_kernels_err}"
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
@torch.library.custom_op("flash::flash_attn_func", mutates_args=())
|
| 27 |
+
def flash_attn_func(
|
| 28 |
+
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, causal: bool = False
|
| 29 |
+
) -> torch.Tensor:
|
| 30 |
+
outputs, lse = _flash_attn_func(q, k, v, causal=causal)
|
| 31 |
+
return outputs
|
| 32 |
+
|
| 33 |
+
@flash_attn_func.register_fake
|
| 34 |
+
def _(q, k, v, **kwargs):
|
| 35 |
+
# two outputs:
|
| 36 |
+
# 1. output: (batch, seq_len, num_heads, head_dim)
|
| 37 |
+
# 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32
|
| 38 |
+
meta_q = torch.empty_like(q).contiguous()
|
| 39 |
+
return meta_q #, q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class QwenDoubleStreamAttnProcessorFA3:
|
| 43 |
+
"""
|
| 44 |
+
FA3-based attention processor for Qwen double-stream architecture.
|
| 45 |
+
Computes joint attention over concatenated [text, image] streams using vLLM FlashAttention-3
|
| 46 |
+
accessed via Hugging Face `kernels`.
|
| 47 |
+
|
| 48 |
+
Notes / limitations:
|
| 49 |
+
- General attention masks are not supported here (FA3 path). `is_causal=False` and no arbitrary mask.
|
| 50 |
+
- Optional windowed attention / sink tokens / softcap can be plumbed through if you use those features.
|
| 51 |
+
- Expects an available `apply_rotary_emb_qwen` in scope (same as your non-FA3 processor).
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
_attention_backend = "fa3" # for parity with your other processors, not used internally
|
| 55 |
+
|
| 56 |
+
def __init__(self):
|
| 57 |
+
_ensure_fa3_available()
|
| 58 |
+
|
| 59 |
+
@torch.no_grad()
|
| 60 |
+
def __call__(
|
| 61 |
+
self,
|
| 62 |
+
attn, # Attention module with to_q/to_k/to_v/add_*_proj, norms, to_out, to_add_out, and .heads
|
| 63 |
+
hidden_states: torch.FloatTensor, # (B, S_img, D_model) image stream
|
| 64 |
+
encoder_hidden_states: torch.FloatTensor = None, # (B, S_txt, D_model) text stream
|
| 65 |
+
encoder_hidden_states_mask: torch.FloatTensor = None, # unused in FA3 path
|
| 66 |
+
attention_mask: Optional[torch.FloatTensor] = None, # unused in FA3 path
|
| 67 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # (img_freqs, txt_freqs)
|
| 68 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
| 69 |
+
if encoder_hidden_states is None:
|
| 70 |
+
raise ValueError("QwenDoubleStreamAttnProcessorFA3 requires encoder_hidden_states (text stream).")
|
| 71 |
+
if attention_mask is not None:
|
| 72 |
+
# FA3 kernel path here does not consume arbitrary masks; fail fast to avoid silent correctness issues.
|
| 73 |
+
raise NotImplementedError("attention_mask is not supported in this FA3 implementation.")
|
| 74 |
+
|
| 75 |
+
_ensure_fa3_available()
|
| 76 |
+
|
| 77 |
+
B, S_img, _ = hidden_states.shape
|
| 78 |
+
S_txt = encoder_hidden_states.shape[1]
|
| 79 |
+
|
| 80 |
+
# ---- QKV projections (image/sample stream) ----
|
| 81 |
+
img_q = attn.to_q(hidden_states) # (B, S_img, D)
|
| 82 |
+
img_k = attn.to_k(hidden_states)
|
| 83 |
+
img_v = attn.to_v(hidden_states)
|
| 84 |
+
|
| 85 |
+
# ---- QKV projections (text/context stream) ----
|
| 86 |
+
txt_q = attn.add_q_proj(encoder_hidden_states) # (B, S_txt, D)
|
| 87 |
+
txt_k = attn.add_k_proj(encoder_hidden_states)
|
| 88 |
+
txt_v = attn.add_v_proj(encoder_hidden_states)
|
| 89 |
+
|
| 90 |
+
# ---- Reshape to (B, S, H, D_h) ----
|
| 91 |
+
H = attn.heads
|
| 92 |
+
img_q = img_q.unflatten(-1, (H, -1))
|
| 93 |
+
img_k = img_k.unflatten(-1, (H, -1))
|
| 94 |
+
img_v = img_v.unflatten(-1, (H, -1))
|
| 95 |
+
|
| 96 |
+
txt_q = txt_q.unflatten(-1, (H, -1))
|
| 97 |
+
txt_k = txt_k.unflatten(-1, (H, -1))
|
| 98 |
+
txt_v = txt_v.unflatten(-1, (H, -1))
|
| 99 |
+
|
| 100 |
+
# ---- Q/K normalization (per your module contract) ----
|
| 101 |
+
if getattr(attn, "norm_q", None) is not None:
|
| 102 |
+
img_q = attn.norm_q(img_q)
|
| 103 |
+
if getattr(attn, "norm_k", None) is not None:
|
| 104 |
+
img_k = attn.norm_k(img_k)
|
| 105 |
+
if getattr(attn, "norm_added_q", None) is not None:
|
| 106 |
+
txt_q = attn.norm_added_q(txt_q)
|
| 107 |
+
if getattr(attn, "norm_added_k", None) is not None:
|
| 108 |
+
txt_k = attn.norm_added_k(txt_k)
|
| 109 |
+
|
| 110 |
+
# ---- RoPE (Qwen variant) ----
|
| 111 |
+
if image_rotary_emb is not None:
|
| 112 |
+
img_freqs, txt_freqs = image_rotary_emb
|
| 113 |
+
# expects tensors shaped (B, S, H, D_h)
|
| 114 |
+
img_q = apply_rotary_emb_qwen(img_q, img_freqs, use_real=False)
|
| 115 |
+
img_k = apply_rotary_emb_qwen(img_k, img_freqs, use_real=False)
|
| 116 |
+
txt_q = apply_rotary_emb_qwen(txt_q, txt_freqs, use_real=False)
|
| 117 |
+
txt_k = apply_rotary_emb_qwen(txt_k, txt_freqs, use_real=False)
|
| 118 |
+
|
| 119 |
+
# ---- Joint attention over [text, image] along sequence axis ----
|
| 120 |
+
# Shapes: (B, S_total, H, D_h)
|
| 121 |
+
q = torch.cat([txt_q, img_q], dim=1)
|
| 122 |
+
k = torch.cat([txt_k, img_k], dim=1)
|
| 123 |
+
v = torch.cat([txt_v, img_v], dim=1)
|
| 124 |
+
|
| 125 |
+
# FlashAttention-3 path expects (B, S, H, D_h) and returns (out, softmax_lse)
|
| 126 |
+
out = flash_attn_func(q, k, v, causal=False) # out: (B, S_total, H, D_h)
|
| 127 |
+
|
| 128 |
+
# ---- Back to (B, S, D_model) ----
|
| 129 |
+
out = out.flatten(2, 3).to(q.dtype)
|
| 130 |
+
|
| 131 |
+
# Split back to text / image segments
|
| 132 |
+
txt_attn_out = out[:, :S_txt, :]
|
| 133 |
+
img_attn_out = out[:, S_txt:, :]
|
| 134 |
+
|
| 135 |
+
# ---- Output projections ----
|
| 136 |
+
img_attn_out = attn.to_out[0](img_attn_out)
|
| 137 |
+
if len(attn.to_out) > 1:
|
| 138 |
+
img_attn_out = attn.to_out[1](img_attn_out) # dropout if present
|
| 139 |
+
|
| 140 |
+
txt_attn_out = attn.to_add_out(txt_attn_out)
|
| 141 |
+
|
| 142 |
+
return img_attn_out, txt_attn_out
|
qwenimage/transformer_qwenimage.py
ADDED
|
@@ -0,0 +1,642 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import functools
|
| 16 |
+
import math
|
| 17 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
|
| 23 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 24 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 25 |
+
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
| 26 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 27 |
+
from diffusers.models.attention import FeedForward, AttentionMixin
|
| 28 |
+
from diffusers.models.attention_dispatch import dispatch_attention_fn
|
| 29 |
+
from diffusers.models.attention_processor import Attention
|
| 30 |
+
from diffusers.models.cache_utils import CacheMixin
|
| 31 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
| 32 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 33 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 34 |
+
from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_timestep_embedding(
|
| 41 |
+
timesteps: torch.Tensor,
|
| 42 |
+
embedding_dim: int,
|
| 43 |
+
flip_sin_to_cos: bool = False,
|
| 44 |
+
downscale_freq_shift: float = 1,
|
| 45 |
+
scale: float = 1,
|
| 46 |
+
max_period: int = 10000,
|
| 47 |
+
) -> torch.Tensor:
|
| 48 |
+
"""
|
| 49 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
| 50 |
+
|
| 51 |
+
Args
|
| 52 |
+
timesteps (torch.Tensor):
|
| 53 |
+
a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
| 54 |
+
embedding_dim (int):
|
| 55 |
+
the dimension of the output.
|
| 56 |
+
flip_sin_to_cos (bool):
|
| 57 |
+
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
|
| 58 |
+
downscale_freq_shift (float):
|
| 59 |
+
Controls the delta between frequencies between dimensions
|
| 60 |
+
scale (float):
|
| 61 |
+
Scaling factor applied to the embeddings.
|
| 62 |
+
max_period (int):
|
| 63 |
+
Controls the maximum frequency of the embeddings
|
| 64 |
+
Returns
|
| 65 |
+
torch.Tensor: an [N x dim] Tensor of positional embeddings.
|
| 66 |
+
"""
|
| 67 |
+
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
| 68 |
+
|
| 69 |
+
half_dim = embedding_dim // 2
|
| 70 |
+
exponent = -math.log(max_period) * torch.arange(
|
| 71 |
+
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
|
| 72 |
+
)
|
| 73 |
+
exponent = exponent / (half_dim - downscale_freq_shift)
|
| 74 |
+
|
| 75 |
+
emb = torch.exp(exponent).to(timesteps.dtype)
|
| 76 |
+
emb = timesteps[:, None].float() * emb[None, :]
|
| 77 |
+
|
| 78 |
+
# scale embeddings
|
| 79 |
+
emb = scale * emb
|
| 80 |
+
|
| 81 |
+
# concat sine and cosine embeddings
|
| 82 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
| 83 |
+
|
| 84 |
+
# flip sine and cosine embeddings
|
| 85 |
+
if flip_sin_to_cos:
|
| 86 |
+
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
| 87 |
+
|
| 88 |
+
# zero pad
|
| 89 |
+
if embedding_dim % 2 == 1:
|
| 90 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
| 91 |
+
return emb
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def apply_rotary_emb_qwen(
|
| 95 |
+
x: torch.Tensor,
|
| 96 |
+
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
| 97 |
+
use_real: bool = True,
|
| 98 |
+
use_real_unbind_dim: int = -1,
|
| 99 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 100 |
+
"""
|
| 101 |
+
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
|
| 102 |
+
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
|
| 103 |
+
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
|
| 104 |
+
tensors contain rotary embeddings and are returned as real tensors.
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
x (`torch.Tensor`):
|
| 108 |
+
Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
|
| 109 |
+
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
|
| 110 |
+
|
| 111 |
+
Returns:
|
| 112 |
+
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
| 113 |
+
"""
|
| 114 |
+
if use_real:
|
| 115 |
+
cos, sin = freqs_cis # [S, D]
|
| 116 |
+
cos = cos[None, None]
|
| 117 |
+
sin = sin[None, None]
|
| 118 |
+
cos, sin = cos.to(x.device), sin.to(x.device)
|
| 119 |
+
|
| 120 |
+
if use_real_unbind_dim == -1:
|
| 121 |
+
# Used for flux, cogvideox, hunyuan-dit
|
| 122 |
+
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
| 123 |
+
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
| 124 |
+
elif use_real_unbind_dim == -2:
|
| 125 |
+
# Used for Stable Audio, OmniGen, CogView4 and Cosmos
|
| 126 |
+
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
|
| 127 |
+
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
|
| 128 |
+
else:
|
| 129 |
+
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
|
| 130 |
+
|
| 131 |
+
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
| 132 |
+
|
| 133 |
+
return out
|
| 134 |
+
else:
|
| 135 |
+
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
| 136 |
+
freqs_cis = freqs_cis.unsqueeze(1)
|
| 137 |
+
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
|
| 138 |
+
|
| 139 |
+
return x_out.type_as(x)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class QwenTimestepProjEmbeddings(nn.Module):
|
| 143 |
+
def __init__(self, embedding_dim):
|
| 144 |
+
super().__init__()
|
| 145 |
+
|
| 146 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
|
| 147 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
| 148 |
+
|
| 149 |
+
def forward(self, timestep, hidden_states):
|
| 150 |
+
timesteps_proj = self.time_proj(timestep)
|
| 151 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) # (N, D)
|
| 152 |
+
|
| 153 |
+
conditioning = timesteps_emb
|
| 154 |
+
|
| 155 |
+
return conditioning
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class QwenEmbedRope(nn.Module):
|
| 159 |
+
def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
|
| 160 |
+
super().__init__()
|
| 161 |
+
self.theta = theta
|
| 162 |
+
self.axes_dim = axes_dim
|
| 163 |
+
pos_index = torch.arange(4096)
|
| 164 |
+
neg_index = torch.arange(4096).flip(0) * -1 - 1
|
| 165 |
+
self.pos_freqs = torch.cat(
|
| 166 |
+
[
|
| 167 |
+
self.rope_params(pos_index, self.axes_dim[0], self.theta),
|
| 168 |
+
self.rope_params(pos_index, self.axes_dim[1], self.theta),
|
| 169 |
+
self.rope_params(pos_index, self.axes_dim[2], self.theta),
|
| 170 |
+
],
|
| 171 |
+
dim=1,
|
| 172 |
+
)
|
| 173 |
+
self.neg_freqs = torch.cat(
|
| 174 |
+
[
|
| 175 |
+
self.rope_params(neg_index, self.axes_dim[0], self.theta),
|
| 176 |
+
self.rope_params(neg_index, self.axes_dim[1], self.theta),
|
| 177 |
+
self.rope_params(neg_index, self.axes_dim[2], self.theta),
|
| 178 |
+
],
|
| 179 |
+
dim=1,
|
| 180 |
+
)
|
| 181 |
+
self.rope_cache = {}
|
| 182 |
+
|
| 183 |
+
# DO NOT USING REGISTER BUFFER HERE, IT WILL CAUSE COMPLEX NUMBERS LOSE ITS IMAGINARY PART
|
| 184 |
+
self.scale_rope = scale_rope
|
| 185 |
+
|
| 186 |
+
def rope_params(self, index, dim, theta=10000):
|
| 187 |
+
"""
|
| 188 |
+
Args:
|
| 189 |
+
index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
|
| 190 |
+
"""
|
| 191 |
+
assert dim % 2 == 0
|
| 192 |
+
freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
|
| 193 |
+
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
| 194 |
+
return freqs
|
| 195 |
+
|
| 196 |
+
def forward(self, video_fhw, txt_seq_lens, device):
|
| 197 |
+
"""
|
| 198 |
+
Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
|
| 199 |
+
txt_length: [bs] a list of 1 integers representing the length of the text
|
| 200 |
+
"""
|
| 201 |
+
if self.pos_freqs.device != device:
|
| 202 |
+
self.pos_freqs = self.pos_freqs.to(device)
|
| 203 |
+
self.neg_freqs = self.neg_freqs.to(device)
|
| 204 |
+
|
| 205 |
+
if isinstance(video_fhw, list):
|
| 206 |
+
video_fhw = video_fhw[0]
|
| 207 |
+
if not isinstance(video_fhw, list):
|
| 208 |
+
video_fhw = [video_fhw]
|
| 209 |
+
|
| 210 |
+
vid_freqs = []
|
| 211 |
+
max_vid_index = 0
|
| 212 |
+
for idx, fhw in enumerate(video_fhw):
|
| 213 |
+
frame, height, width = fhw
|
| 214 |
+
rope_key = f"{idx}_{height}_{width}"
|
| 215 |
+
|
| 216 |
+
if not torch.compiler.is_compiling():
|
| 217 |
+
if rope_key not in self.rope_cache:
|
| 218 |
+
self.rope_cache[rope_key] = self._compute_video_freqs(frame, height, width, idx)
|
| 219 |
+
video_freq = self.rope_cache[rope_key]
|
| 220 |
+
else:
|
| 221 |
+
video_freq = self._compute_video_freqs(frame, height, width, idx)
|
| 222 |
+
video_freq = video_freq.to(device)
|
| 223 |
+
vid_freqs.append(video_freq)
|
| 224 |
+
|
| 225 |
+
if self.scale_rope:
|
| 226 |
+
max_vid_index = max(height // 2, width // 2, max_vid_index)
|
| 227 |
+
else:
|
| 228 |
+
max_vid_index = max(height, width, max_vid_index)
|
| 229 |
+
|
| 230 |
+
max_len = max(txt_seq_lens)
|
| 231 |
+
txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]
|
| 232 |
+
vid_freqs = torch.cat(vid_freqs, dim=0)
|
| 233 |
+
|
| 234 |
+
return vid_freqs, txt_freqs
|
| 235 |
+
|
| 236 |
+
@functools.lru_cache(maxsize=None)
|
| 237 |
+
def _compute_video_freqs(self, frame, height, width, idx=0):
|
| 238 |
+
seq_lens = frame * height * width
|
| 239 |
+
freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
|
| 240 |
+
freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
|
| 241 |
+
|
| 242 |
+
freqs_frame = freqs_pos[0][idx : idx + frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
|
| 243 |
+
if self.scale_rope:
|
| 244 |
+
freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
|
| 245 |
+
freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
|
| 246 |
+
freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
|
| 247 |
+
freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)
|
| 248 |
+
else:
|
| 249 |
+
freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
|
| 250 |
+
freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)
|
| 251 |
+
|
| 252 |
+
freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
|
| 253 |
+
return freqs.clone().contiguous()
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class QwenDoubleStreamAttnProcessor2_0:
|
| 257 |
+
"""
|
| 258 |
+
Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
|
| 259 |
+
implements joint attention computation where text and image streams are processed together.
|
| 260 |
+
"""
|
| 261 |
+
|
| 262 |
+
_attention_backend = None
|
| 263 |
+
|
| 264 |
+
def __init__(self):
|
| 265 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 266 |
+
raise ImportError(
|
| 267 |
+
"QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
def __call__(
|
| 271 |
+
self,
|
| 272 |
+
attn: Attention,
|
| 273 |
+
hidden_states: torch.FloatTensor, # Image stream
|
| 274 |
+
encoder_hidden_states: torch.FloatTensor = None, # Text stream
|
| 275 |
+
encoder_hidden_states_mask: torch.FloatTensor = None,
|
| 276 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 277 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 278 |
+
) -> torch.FloatTensor:
|
| 279 |
+
if encoder_hidden_states is None:
|
| 280 |
+
raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
|
| 281 |
+
|
| 282 |
+
seq_txt = encoder_hidden_states.shape[1]
|
| 283 |
+
|
| 284 |
+
# Compute QKV for image stream (sample projections)
|
| 285 |
+
img_query = attn.to_q(hidden_states)
|
| 286 |
+
img_key = attn.to_k(hidden_states)
|
| 287 |
+
img_value = attn.to_v(hidden_states)
|
| 288 |
+
|
| 289 |
+
# Compute QKV for text stream (context projections)
|
| 290 |
+
txt_query = attn.add_q_proj(encoder_hidden_states)
|
| 291 |
+
txt_key = attn.add_k_proj(encoder_hidden_states)
|
| 292 |
+
txt_value = attn.add_v_proj(encoder_hidden_states)
|
| 293 |
+
|
| 294 |
+
# Reshape for multi-head attention
|
| 295 |
+
img_query = img_query.unflatten(-1, (attn.heads, -1))
|
| 296 |
+
img_key = img_key.unflatten(-1, (attn.heads, -1))
|
| 297 |
+
img_value = img_value.unflatten(-1, (attn.heads, -1))
|
| 298 |
+
|
| 299 |
+
txt_query = txt_query.unflatten(-1, (attn.heads, -1))
|
| 300 |
+
txt_key = txt_key.unflatten(-1, (attn.heads, -1))
|
| 301 |
+
txt_value = txt_value.unflatten(-1, (attn.heads, -1))
|
| 302 |
+
|
| 303 |
+
# Apply QK normalization
|
| 304 |
+
if attn.norm_q is not None:
|
| 305 |
+
img_query = attn.norm_q(img_query)
|
| 306 |
+
if attn.norm_k is not None:
|
| 307 |
+
img_key = attn.norm_k(img_key)
|
| 308 |
+
if attn.norm_added_q is not None:
|
| 309 |
+
txt_query = attn.norm_added_q(txt_query)
|
| 310 |
+
if attn.norm_added_k is not None:
|
| 311 |
+
txt_key = attn.norm_added_k(txt_key)
|
| 312 |
+
|
| 313 |
+
# Apply RoPE
|
| 314 |
+
if image_rotary_emb is not None:
|
| 315 |
+
img_freqs, txt_freqs = image_rotary_emb
|
| 316 |
+
img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
|
| 317 |
+
img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
|
| 318 |
+
txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
|
| 319 |
+
txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
|
| 320 |
+
|
| 321 |
+
# Concatenate for joint attention
|
| 322 |
+
# Order: [text, image]
|
| 323 |
+
joint_query = torch.cat([txt_query, img_query], dim=1)
|
| 324 |
+
joint_key = torch.cat([txt_key, img_key], dim=1)
|
| 325 |
+
joint_value = torch.cat([txt_value, img_value], dim=1)
|
| 326 |
+
|
| 327 |
+
# Compute joint attention
|
| 328 |
+
joint_hidden_states = dispatch_attention_fn(
|
| 329 |
+
joint_query,
|
| 330 |
+
joint_key,
|
| 331 |
+
joint_value,
|
| 332 |
+
attn_mask=attention_mask,
|
| 333 |
+
dropout_p=0.0,
|
| 334 |
+
is_causal=False,
|
| 335 |
+
backend=self._attention_backend,
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
# Reshape back
|
| 339 |
+
joint_hidden_states = joint_hidden_states.flatten(2, 3)
|
| 340 |
+
joint_hidden_states = joint_hidden_states.to(joint_query.dtype)
|
| 341 |
+
|
| 342 |
+
# Split attention outputs back
|
| 343 |
+
txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part
|
| 344 |
+
img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
|
| 345 |
+
|
| 346 |
+
# Apply output projections
|
| 347 |
+
img_attn_output = attn.to_out[0](img_attn_output)
|
| 348 |
+
if len(attn.to_out) > 1:
|
| 349 |
+
img_attn_output = attn.to_out[1](img_attn_output) # dropout
|
| 350 |
+
|
| 351 |
+
txt_attn_output = attn.to_add_out(txt_attn_output)
|
| 352 |
+
|
| 353 |
+
return img_attn_output, txt_attn_output
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
@maybe_allow_in_graph
|
| 357 |
+
class QwenImageTransformerBlock(nn.Module):
|
| 358 |
+
def __init__(
|
| 359 |
+
self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
|
| 360 |
+
):
|
| 361 |
+
super().__init__()
|
| 362 |
+
|
| 363 |
+
self.dim = dim
|
| 364 |
+
self.num_attention_heads = num_attention_heads
|
| 365 |
+
self.attention_head_dim = attention_head_dim
|
| 366 |
+
|
| 367 |
+
# Image processing modules
|
| 368 |
+
self.img_mod = nn.Sequential(
|
| 369 |
+
nn.SiLU(),
|
| 370 |
+
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
|
| 371 |
+
)
|
| 372 |
+
self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
| 373 |
+
self.attn = Attention(
|
| 374 |
+
query_dim=dim,
|
| 375 |
+
cross_attention_dim=None, # Enable cross attention for joint computation
|
| 376 |
+
added_kv_proj_dim=dim, # Enable added KV projections for text stream
|
| 377 |
+
dim_head=attention_head_dim,
|
| 378 |
+
heads=num_attention_heads,
|
| 379 |
+
out_dim=dim,
|
| 380 |
+
context_pre_only=False,
|
| 381 |
+
bias=True,
|
| 382 |
+
processor=QwenDoubleStreamAttnProcessor2_0(),
|
| 383 |
+
qk_norm=qk_norm,
|
| 384 |
+
eps=eps,
|
| 385 |
+
)
|
| 386 |
+
self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
| 387 |
+
self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 388 |
+
|
| 389 |
+
# Text processing modules
|
| 390 |
+
self.txt_mod = nn.Sequential(
|
| 391 |
+
nn.SiLU(),
|
| 392 |
+
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
|
| 393 |
+
)
|
| 394 |
+
self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
| 395 |
+
# Text doesn't need separate attention - it's handled by img_attn joint computation
|
| 396 |
+
self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
| 397 |
+
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 398 |
+
|
| 399 |
+
def _modulate(self, x, mod_params):
|
| 400 |
+
"""Apply modulation to input tensor"""
|
| 401 |
+
shift, scale, gate = mod_params.chunk(3, dim=-1)
|
| 402 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
|
| 403 |
+
|
| 404 |
+
def forward(
|
| 405 |
+
self,
|
| 406 |
+
hidden_states: torch.Tensor,
|
| 407 |
+
encoder_hidden_states: torch.Tensor,
|
| 408 |
+
encoder_hidden_states_mask: torch.Tensor,
|
| 409 |
+
temb: torch.Tensor,
|
| 410 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 411 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 412 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 413 |
+
# Get modulation parameters for both streams
|
| 414 |
+
img_mod_params = self.img_mod(temb) # [B, 6*dim]
|
| 415 |
+
txt_mod_params = self.txt_mod(temb) # [B, 6*dim]
|
| 416 |
+
|
| 417 |
+
# Split modulation parameters for norm1 and norm2
|
| 418 |
+
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
|
| 419 |
+
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
|
| 420 |
+
|
| 421 |
+
# Process image stream - norm1 + modulation
|
| 422 |
+
img_normed = self.img_norm1(hidden_states)
|
| 423 |
+
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
|
| 424 |
+
|
| 425 |
+
# Process text stream - norm1 + modulation
|
| 426 |
+
txt_normed = self.txt_norm1(encoder_hidden_states)
|
| 427 |
+
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
|
| 428 |
+
|
| 429 |
+
# Use QwenAttnProcessor2_0 for joint attention computation
|
| 430 |
+
# This directly implements the DoubleStreamLayerMegatron logic:
|
| 431 |
+
# 1. Computes QKV for both streams
|
| 432 |
+
# 2. Applies QK normalization and RoPE
|
| 433 |
+
# 3. Concatenates and runs joint attention
|
| 434 |
+
# 4. Splits results back to separate streams
|
| 435 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
| 436 |
+
attn_output = self.attn(
|
| 437 |
+
hidden_states=img_modulated, # Image stream (will be processed as "sample")
|
| 438 |
+
encoder_hidden_states=txt_modulated, # Text stream (will be processed as "context")
|
| 439 |
+
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
| 440 |
+
image_rotary_emb=image_rotary_emb,
|
| 441 |
+
**joint_attention_kwargs,
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
# QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
|
| 445 |
+
img_attn_output, txt_attn_output = attn_output
|
| 446 |
+
|
| 447 |
+
# Apply attention gates and add residual (like in Megatron)
|
| 448 |
+
hidden_states = hidden_states + img_gate1 * img_attn_output
|
| 449 |
+
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
|
| 450 |
+
|
| 451 |
+
# Process image stream - norm2 + MLP
|
| 452 |
+
img_normed2 = self.img_norm2(hidden_states)
|
| 453 |
+
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
|
| 454 |
+
img_mlp_output = self.img_mlp(img_modulated2)
|
| 455 |
+
hidden_states = hidden_states + img_gate2 * img_mlp_output
|
| 456 |
+
|
| 457 |
+
# Process text stream - norm2 + MLP
|
| 458 |
+
txt_normed2 = self.txt_norm2(encoder_hidden_states)
|
| 459 |
+
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
|
| 460 |
+
txt_mlp_output = self.txt_mlp(txt_modulated2)
|
| 461 |
+
encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output
|
| 462 |
+
|
| 463 |
+
# Clip to prevent overflow for fp16
|
| 464 |
+
if encoder_hidden_states.dtype == torch.float16:
|
| 465 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
| 466 |
+
if hidden_states.dtype == torch.float16:
|
| 467 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
| 468 |
+
|
| 469 |
+
return encoder_hidden_states, hidden_states
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin, AttentionMixin):
|
| 473 |
+
"""
|
| 474 |
+
The Transformer model introduced in Qwen.
|
| 475 |
+
|
| 476 |
+
Args:
|
| 477 |
+
patch_size (`int`, defaults to `2`):
|
| 478 |
+
Patch size to turn the input data into small patches.
|
| 479 |
+
in_channels (`int`, defaults to `64`):
|
| 480 |
+
The number of channels in the input.
|
| 481 |
+
out_channels (`int`, *optional*, defaults to `None`):
|
| 482 |
+
The number of channels in the output. If not specified, it defaults to `in_channels`.
|
| 483 |
+
num_layers (`int`, defaults to `60`):
|
| 484 |
+
The number of layers of dual stream DiT blocks to use.
|
| 485 |
+
attention_head_dim (`int`, defaults to `128`):
|
| 486 |
+
The number of dimensions to use for each attention head.
|
| 487 |
+
num_attention_heads (`int`, defaults to `24`):
|
| 488 |
+
The number of attention heads to use.
|
| 489 |
+
joint_attention_dim (`int`, defaults to `3584`):
|
| 490 |
+
The number of dimensions to use for the joint attention (embedding/channel dimension of
|
| 491 |
+
`encoder_hidden_states`).
|
| 492 |
+
guidance_embeds (`bool`, defaults to `False`):
|
| 493 |
+
Whether to use guidance embeddings for guidance-distilled variant of the model.
|
| 494 |
+
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
| 495 |
+
The dimensions to use for the rotary positional embeddings.
|
| 496 |
+
"""
|
| 497 |
+
|
| 498 |
+
_supports_gradient_checkpointing = True
|
| 499 |
+
_no_split_modules = ["QwenImageTransformerBlock"]
|
| 500 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
| 501 |
+
_repeated_blocks = ["QwenImageTransformerBlock"]
|
| 502 |
+
|
| 503 |
+
@register_to_config
|
| 504 |
+
def __init__(
|
| 505 |
+
self,
|
| 506 |
+
patch_size: int = 2,
|
| 507 |
+
in_channels: int = 64,
|
| 508 |
+
out_channels: Optional[int] = 16,
|
| 509 |
+
num_layers: int = 60,
|
| 510 |
+
attention_head_dim: int = 128,
|
| 511 |
+
num_attention_heads: int = 24,
|
| 512 |
+
joint_attention_dim: int = 3584,
|
| 513 |
+
guidance_embeds: bool = False, # TODO: this should probably be removed
|
| 514 |
+
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
| 515 |
+
):
|
| 516 |
+
super().__init__()
|
| 517 |
+
self.out_channels = out_channels or in_channels
|
| 518 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 519 |
+
|
| 520 |
+
self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
|
| 521 |
+
|
| 522 |
+
self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
|
| 523 |
+
|
| 524 |
+
self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
|
| 525 |
+
|
| 526 |
+
self.img_in = nn.Linear(in_channels, self.inner_dim)
|
| 527 |
+
self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
|
| 528 |
+
|
| 529 |
+
self.transformer_blocks = nn.ModuleList(
|
| 530 |
+
[
|
| 531 |
+
QwenImageTransformerBlock(
|
| 532 |
+
dim=self.inner_dim,
|
| 533 |
+
num_attention_heads=num_attention_heads,
|
| 534 |
+
attention_head_dim=attention_head_dim,
|
| 535 |
+
)
|
| 536 |
+
for _ in range(num_layers)
|
| 537 |
+
]
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 541 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
| 542 |
+
|
| 543 |
+
self.gradient_checkpointing = False
|
| 544 |
+
|
| 545 |
+
def forward(
|
| 546 |
+
self,
|
| 547 |
+
hidden_states: torch.Tensor,
|
| 548 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 549 |
+
encoder_hidden_states_mask: torch.Tensor = None,
|
| 550 |
+
timestep: torch.LongTensor = None,
|
| 551 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 552 |
+
guidance: torch.Tensor = None, # TODO: this should probably be removed
|
| 553 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 554 |
+
return_dict: bool = True,
|
| 555 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
| 556 |
+
"""
|
| 557 |
+
The [`QwenTransformer2DModel`] forward method.
|
| 558 |
+
|
| 559 |
+
Args:
|
| 560 |
+
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
| 561 |
+
Input `hidden_states`.
|
| 562 |
+
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
| 563 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 564 |
+
encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
|
| 565 |
+
Mask of the input conditions.
|
| 566 |
+
timestep ( `torch.LongTensor`):
|
| 567 |
+
Used to indicate denoising step.
|
| 568 |
+
attention_kwargs (`dict`, *optional*):
|
| 569 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 570 |
+
`self.processor` in
|
| 571 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 572 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 573 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 574 |
+
tuple.
|
| 575 |
+
|
| 576 |
+
Returns:
|
| 577 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 578 |
+
`tuple` where the first element is the sample tensor.
|
| 579 |
+
"""
|
| 580 |
+
if attention_kwargs is not None:
|
| 581 |
+
attention_kwargs = attention_kwargs.copy()
|
| 582 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
| 583 |
+
else:
|
| 584 |
+
lora_scale = 1.0
|
| 585 |
+
|
| 586 |
+
if USE_PEFT_BACKEND:
|
| 587 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 588 |
+
scale_lora_layers(self, lora_scale)
|
| 589 |
+
else:
|
| 590 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
| 591 |
+
logger.warning(
|
| 592 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
hidden_states = self.img_in(hidden_states)
|
| 596 |
+
|
| 597 |
+
timestep = timestep.to(hidden_states.dtype)
|
| 598 |
+
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
| 599 |
+
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
| 600 |
+
|
| 601 |
+
if guidance is not None:
|
| 602 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 603 |
+
|
| 604 |
+
temb = (
|
| 605 |
+
self.time_text_embed(timestep, hidden_states)
|
| 606 |
+
if guidance is None
|
| 607 |
+
else self.time_text_embed(timestep, guidance, hidden_states)
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 611 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 612 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 613 |
+
block,
|
| 614 |
+
hidden_states,
|
| 615 |
+
encoder_hidden_states,
|
| 616 |
+
encoder_hidden_states_mask,
|
| 617 |
+
temb,
|
| 618 |
+
image_rotary_emb,
|
| 619 |
+
)
|
| 620 |
+
|
| 621 |
+
else:
|
| 622 |
+
encoder_hidden_states, hidden_states = block(
|
| 623 |
+
hidden_states=hidden_states,
|
| 624 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 625 |
+
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
| 626 |
+
temb=temb,
|
| 627 |
+
image_rotary_emb=image_rotary_emb,
|
| 628 |
+
joint_attention_kwargs=attention_kwargs,
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
# Use only the image part (hidden_states) from the dual-stream blocks
|
| 632 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 633 |
+
output = self.proj_out(hidden_states)
|
| 634 |
+
|
| 635 |
+
if USE_PEFT_BACKEND:
|
| 636 |
+
# remove `lora_scale` from each PEFT layer
|
| 637 |
+
unscale_lora_layers(self, lora_scale)
|
| 638 |
+
|
| 639 |
+
if not return_dict:
|
| 640 |
+
return (output,)
|
| 641 |
+
|
| 642 |
+
return Transformer2DModelOutput(sample=output)
|