import gradio as gr import numpy as np import random import torch import spaces from PIL import Image from diffusers import FlowMatchEulerDiscreteScheduler from optimization import optimize_pipeline_ from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 from huggingface_hub import InferenceClient import math from huggingface_hub import hf_hub_download from safetensors.torch import load_file import os import base64 from io import BytesIO import json import time # Added for history update delay from gradio_client import Client, handle_file import tempfile from PIL import Image import os import gradio as gr def turn_into_video(input_images, output_images, prompt, progress=gr.Progress(track_tqdm=True)): if not input_images or not output_images: raise gr.Error("Please generate an output image first.") progress(0.02, desc="Preparing images...") def extract_pil(img_entry): if isinstance(img_entry, tuple) and isinstance(img_entry[0], Image.Image): return img_entry[0] elif isinstance(img_entry, Image.Image): return img_entry elif isinstance(img_entry, str): return Image.open(img_entry) else: raise gr.Error(f"Unsupported image format: {type(img_entry)}") start_img = extract_pil(input_images[0]) end_img = extract_pil(output_images[0]) progress(0.10, desc="Saving temp files...") with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_start, \ tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_end: start_img.save(tmp_start.name) end_img.save(tmp_end.name) progress(0.20, desc="Connecting to Wan space...") client = Client("multimodalart/wan-2-2-first-last-frame") progress(0.35, desc="Generating video...") video_path, seed = client.predict( start_image_pil=handle_file(tmp_start.name), end_image_pil=handle_file(tmp_end.name), prompt=prompt or "smooth cinematic transition", api_name="/generate_video" ) progress(0.95, desc="Finalizing...") print(video_path) return video_path['video'] SYSTEM_PROMPT = ''' # Edit Instruction Rewriter You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited. Please strictly follow the rewriting rules below: ## 1. General Principles - Keep the rewritten prompt **concise and comprehensive**. Avoid overly long sentences and unnecessary descriptive language. - If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary. - Keep the main part of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility. - All added objects or modifications must align with the logic and style of the scene in the input images. - If multiple sub-images are to be generated, describe the content of each sub-image individually. ## 2. Task-Type Handling Rules ### 1. Add, Delete, Replace Tasks - If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar. - If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example: > Original: "Add an animal" > Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera" - Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid. - For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X. ### 2. Text Editing Tasks - All text content must be enclosed in English double quotes `" "`. Keep the original language of the text, and keep the capitalization. - Both adding new text and replacing existing text are text replacement tasks, For example: - Replace "xx" to "yy" - Replace the mask / bounding box to "yy" - Replace the visual object to "yy" - Specify text position, color, and layout only if user has required. - If font is specified, keep the original language of the font. ### 3. Human Editing Tasks - Make the smallest changes to the given user's prompt. - If changes to background, action, expression, camera shot, or ambient lighting are required, please list each modification individually. - **Edits to makeup or facial features / expression must be subtle, not exaggerated, and must preserve the subject's identity consistency.** > Original: "Add eyebrows to the face" > Rewritten: "Slightly thicken the person's eyebrows with little change, look natural." ### 4. Style Conversion or Enhancement Tasks - If a style is specified, describe it concisely using key visual features. For example: > Original: "Disco style" > Rewritten: "1970s disco style: flashing lights, disco ball, mirrored walls, vibrant colors" - For style reference, analyze the original image and extract key characteristics (color, composition, texture, lighting, artistic style, etc.), integrating them into the instruction. - **Colorization tasks (including old photo restoration) must use the fixed template:** "Restore and colorize the old photo." - Clearly specify the object to be modified. For example: > Original: Modify the subject in Picture 1 to match the style of Picture 2. > Rewritten: Change the girl in Picture 1 to the ink-wash style of Picture 2 — rendered in black-and-white watercolor with soft color transitions. ### 5. Material Replacement - Clearly specify the object and the material. For example: "Change the material of the apple to papercut style." - For text material replacement, use the fixed template: "Change the material of text "xxxx" to laser style" ### 6. Logo/Pattern Editing - Material replacement should preserve the original shape and structure as much as possible. For example: > Original: "Convert to sapphire material" > Rewritten: "Convert the main subject in the image to sapphire material, preserving similar shape and structure" - When migrating logos/patterns to new scenes, ensure shape and structure consistency. For example: > Original: "Migrate the logo in the image to a new scene" > Rewritten: "Migrate the logo in the image to a new scene, preserving similar shape and structure" ### 7. Multi-Image Tasks - Rewritten prompts must clearly point out which image's element is being modified. For example: > Original: "Replace the subject of picture 1 with the subject of picture 2" > Rewritten: "Replace the girl of picture 1 with the boy of picture 2, keeping picture 2's background unchanged" - For stylization tasks, describe the reference image's style in the rewritten prompt, while preserving the visual content of the source image. ## 3. Rationale and Logic Check - Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" requires logical correction. - Supplement missing critical information: e.g., if position is unspecified, choose a reasonable area based on composition (near subject, blank space, center/edge, etc.). # Output Format Example ```json { "Rewritten": "..." } ''' NEXT_SCENE_SYSTEM_PROMPT = ''' # Next Scene Prompt Generator You are a cinematic AI director assistant. Your task is to analyze the provided image and generate a compelling "Next Scene" prompt that describes the natural cinematic progression from the current frame. ## Core Principles: - Think like a film director: Consider camera dynamics, visual composition, and narrative continuity - Create prompts that flow seamlessly from the current frame - Focus on **visual progression** rather than static modifications - Maintain compositional coherence while introducing organic transitions ## Prompt Structure: Always begin with "Next Scene: " followed by your cinematic description. ## Key Elements to Include: 1. **Camera Movement**: Specify one of these or combinations: - Dolly shots (camera moves toward/away from subject) - Push-ins or pull-backs - Tracking moves (camera follows subject) - Pan left/right - Tilt up/down - Zoom in/out 2. **Framing Evolution**: Describe how the shot composition changes: - Wide to close-up transitions - Angle shifts (high angle to eye level, etc.) - Reframing of subjects - Revealing new elements in frame 3. **Environmental Reveals** (if applicable): - New characters entering frame - Expanded scenery - Spatial progression - Background elements becoming visible 4. **Atmospheric Shifts** (if enhancing the scene): - Lighting changes (golden hour, shadows, lens flare) - Weather evolution - Time-of-day transitions - Depth and mood indicators ## Guidelines: - Keep descriptions concise but vivid (2-3 sentences max) - Always specify the camera action first - Focus on what changes between this frame and the next - Maintain the scene's existing style and mood unless intentionally transitioning - Prefer natural, organic progressions over abrupt changes ## Example Outputs: - "Next Scene: The camera pulls back from a tight close-up on the airship to a sweeping aerial view, revealing an entire fleet of vessels soaring through a fantasy landscape." - "Next Scene: The camera tracks forward and tilts down, bringing the sun and helicopters closer into frame as a strong lens flare intensifies." - "Next Scene: The camera pans right, removing the dragon and rider from view while revealing more of the floating mountain range in the distance." - "Next Scene: The camera moves slightly forward as sunlight breaks through the clouds, casting a soft glow around the character's silhouette in the mist. Realistic cinematic style, atmospheric depth." ## Output Format: Return ONLY the next scene prompt as plain text, starting with "Next Scene: " Do NOT include JSON formatting or additional explanations. ''' # --- Prompt Enhancement using Hugging Face InferenceClient --- def polish_prompt_hf(original_prompt, img_list): """ Rewrites the prompt using a Hugging Face InferenceClient. """ # Ensure HF_TOKEN is set api_key = os.environ.get("HF_TOKEN") if not api_key: print("Warning: HF_TOKEN not set. Falling back to original prompt.") return original_prompt try: # Initialize the client prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {original_prompt}\n\nRewritten Prompt:" client = InferenceClient( provider="nebius", api_key=api_key, ) # Format the messages for the chat completions API sys_promot = "you are a helpful assistant, you should provide useful answers to users." messages = [ {"role": "system", "content": sys_promot}, {"role": "user", "content": []}] for img in img_list: messages[1]["content"].append( {"image": f"data:image/png;base64,{encode_image(img)}"}) messages[1]["content"].append({"text": f"{prompt}"}) # Call the API completion = client.chat.completions.create( model="Qwen/Qwen2.5-VL-72B-Instruct", messages=messages, ) # Parse the response result = completion.choices[0].message.content # Try to extract JSON if present if '"Rewritten"' in result: try: # Clean up the response result = result.replace('```json', '').replace('```', '') result_json = json.loads(result) polished_prompt = result_json.get('Rewritten', result) except: polished_prompt = result else: polished_prompt = result polished_prompt = polished_prompt.strip().replace("\n", " ") return polished_prompt except Exception as e: print(f"Error during API call to Hugging Face: {e}") # Fallback to original prompt if enhancement fails return original_prompt def next_scene_prompt(original_prompt, img_list): """ Rewrites the prompt using a Hugging Face InferenceClient. Supports multiple images via img_list. """ # Ensure HF_TOKEN is set api_key = os.environ.get("HF_TOKEN") if not api_key: print("Warning: HF_TOKEN not set. Falling back to original prompt.") return original_prompt prompt = f"{NEXT_SCENE_SYSTEM_PROMPT}" system_prompt = "you are a helpful assistant, you should provide useful answers to users." try: # Initialize the client client = InferenceClient( provider="nebius", api_key=api_key, ) # Convert list of images to base64 data URLs image_urls = [] if img_list is not None: # Ensure img_list is actually a list if not isinstance(img_list, list): img_list = [img_list] for img in img_list: image_url = None # If img is a PIL Image if hasattr(img, 'save'): # Check if it's a PIL Image buffered = BytesIO() img.save(buffered, format="PNG") img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') image_url = f"data:image/png;base64,{img_base64}" # If img is already a file path (string) elif isinstance(img, str): with open(img, "rb") as image_file: img_base64 = base64.b64encode(image_file.read()).decode('utf-8') image_url = f"data:image/png;base64,{img_base64}" else: print(f"Warning: Unexpected image type: {type(img)}, skipping...") continue if image_url: image_urls.append(image_url) # Build the content array with text first, then all images content = [ { "type": "text", "text": prompt } ] # Add all images to the content for image_url in image_urls: content.append({ "type": "image_url", "image_url": { "url": image_url } }) # Format the messages for the chat completions API messages = [ {"role": "system", "content": system_prompt}, { "role": "user", "content": content } ] # Call the API completion = client.chat.completions.create( model="Qwen/Qwen2.5-VL-72B-Instruct", messages=messages, ) # Parse the response result = completion.choices[0].message.content # Try to extract JSON if present if '"Rewritten"' in result: try: # Clean up the response result = result.replace('```json', '').replace('```', '') result_json = json.loads(result) polished_prompt = result_json.get('Rewritten', result) except: polished_prompt = result else: polished_prompt = result polished_prompt = polished_prompt.strip().replace("\n", " ") return polished_prompt except Exception as e: print(f"Error during API call to Hugging Face: {e}") # Fallback to original prompt if enhancement fails return original_prompt def update_history(new_images, history): """Updates the history gallery with the new images.""" time.sleep(0.5) # Small delay to ensure images are ready if history is None: history = [] if new_images is not None and len(new_images) > 0: if not isinstance(history, list): history = list(history) if history else [] for img in new_images: history.insert(0, img) history = history[:20] # Keep only last 20 images return history def use_history_as_input(evt: gr.SelectData): """Sets the selected history image as the new input image.""" if evt.value is not None: return gr.update(value=[(evt.value,)]) return gr.update() def encode_image(pil_image): import io buffered = io.BytesIO() pil_image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode("utf-8") # --- Model Loading --- dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", subfolder='transformer', torch_dtype=dtype, device_map='cuda'),torch_dtype=dtype).to(device) pipe.load_lora_weights( "lovis93/next-scene-qwen-image-lora-2509", weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene" ) pipe.set_adapters(["next-scene"], adapter_weights=[1.]) pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.) pipe.unload_lora_weights() # Apply the same optimizations from the first version pipe.transformer.__class__ = QwenImageTransformer2DModel pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) # --- Ahead-of-time compilation --- optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") # --- UI Constants and Helpers --- MAX_SEED = np.iinfo(np.int32).max def use_output_as_input(output_images): """Convert output images to input format for the gallery""" if output_images is None or len(output_images) == 0: return [] return output_images def suggest_next_scene_prompt(images): pil_images = [] if images is not None: for item in images: try: if isinstance(item[0], Image.Image): pil_images.append(item[0].convert("RGB")) elif isinstance(item[0], str): pil_images.append(Image.open(item[0]).convert("RGB")) elif hasattr(item, "name"): pil_images.append(Image.open(item.name).convert("RGB")) except Exception: continue if len(pil_images) > 0: prompt = next_scene_prompt("", pil_images) else: prompt = "" print("next scene prompt: ", prompt) return prompt # --- Main Inference Function (with hardcoded negative prompt) --- @spaces.GPU(duration=300) def infer( images, prompt, seed=42, randomize_seed=False, true_guidance_scale=1.0, num_inference_steps=4, height=None, width=None, rewrite_prompt=True, num_images_per_prompt=1, progress=gr.Progress(track_tqdm=True), ): """ Generates an image using the local Qwen-Image diffusers pipeline. """ # Hardcode the negative prompt as requested negative_prompt = " " if randomize_seed: seed = random.randint(0, MAX_SEED) # Set up the generator for reproducibility generator = torch.Generator(device=device).manual_seed(seed) # Load input images into PIL Images pil_images = [] if images is not None: for item in images: try: if isinstance(item[0], Image.Image): pil_images.append(item[0].convert("RGB")) elif isinstance(item[0], str): pil_images.append(Image.open(item[0]).convert("RGB")) elif hasattr(item, "name"): pil_images.append(Image.open(item.name).convert("RGB")) except Exception: continue if height==256 and width==256: height, width = None, None print(f"Calling pipeline with prompt: '{prompt}'") print(f"Negative Prompt: '{negative_prompt}'") print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}") if rewrite_prompt and len(pil_images) > 0: prompt = polish_prompt_hf(prompt, pil_images) print(f"Rewritten Prompt: {prompt}") # Generate the image image = pipe( image=pil_images if len(pil_images) > 0 else None, prompt=prompt, height=height, width=width, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, generator=generator, true_cfg_scale=true_guidance_scale, num_images_per_prompt=num_images_per_prompt, ).images # Return images, seed, and make button visible return image, seed, gr.update(visible=True), gr.update(visible=True) # --- Examples and UI Layout --- examples = [] css = """ #col-container { margin: 0 auto; max-width: 1024px; } #logo-title { text-align: center; } #logo-title img { width: 400px; } #edit_text{margin-top: -62px !important} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML("""