Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from gradio_litmodel3d import LitModel3D | |
| import os | |
| import shutil | |
| os.environ['SPCONV_ALGO'] = 'native' | |
| from typing import * | |
| import torch | |
| import numpy as np | |
| import imageio | |
| from easydict import EasyDict as edict | |
| from PIL import Image, ImageOps | |
| from trellis.pipelines import TrellisImageTo3DPipeline | |
| from trellis.representations import Gaussian, MeshExtractResult | |
| from trellis.utils import render_utils, postprocessing_utils | |
| import os | |
| import random | |
| import torch | |
| import torchvision.transforms.functional as TF | |
| from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
| from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler | |
| from controlnet_aux import PidiNetDetector, HEDdetector | |
| from diffusers.utils import load_image | |
| from huggingface_hub import HfApi | |
| from pathlib import Path | |
| from PIL import Image, ImageOps | |
| import torch | |
| import numpy as np | |
| import cv2 | |
| import os | |
| import random | |
| from gradio_imageslider import ImageSlider | |
| style_list = [ | |
| { | |
| "name": "(No style)", | |
| "prompt": "{prompt}", | |
| "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
| }, | |
| { | |
| "name": "Cinematic", | |
| "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
| "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
| }, | |
| { | |
| "name": "3D Model", | |
| "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", | |
| "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
| }, | |
| { | |
| "name": "Anime", | |
| "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
| "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
| }, | |
| { | |
| "name": "Digital Art", | |
| "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", | |
| "negative_prompt": "photo, photorealistic, realism, ugly", | |
| }, | |
| { | |
| "name": "Photographic", | |
| "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
| "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
| }, | |
| { | |
| "name": "Pixel art", | |
| "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", | |
| "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", | |
| }, | |
| { | |
| "name": "Fantasy art", | |
| "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
| "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", | |
| }, | |
| { | |
| "name": "Neonpunk", | |
| "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
| "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
| }, | |
| { | |
| "name": "Manga", | |
| "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", | |
| "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", | |
| }, | |
| ] | |
| styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
| STYLE_NAMES = list(styles.keys()) | |
| DEFAULT_STYLE_NAME = "(No style)" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| def reset_canvas(): | |
| return gr.update(value={"background":Image.new("RGB", (512, 512), (255, 255, 255)), "layers":[Image.new("RGB", (512, 512), (255, 255, 255))], "composite":Image.new("RGB", (512, 512), (255, 255, 255))}) | |
| def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: | |
| p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
| return p.replace("{prompt}", positive), n + negative | |
| def start_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| def end_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| shutil.rmtree(user_dir) | |
| def preprocess_image(image: Image.Image, | |
| prompt: str = "", | |
| negative_prompt: str = "", | |
| style_name: str = "", | |
| num_steps: int = 25, | |
| guidance_scale: float = 5, | |
| controlnet_conditioning_scale: float = 1.0, | |
| ) -> Image.Image: | |
| """ | |
| Preprocess the input image. | |
| Args: | |
| image (Image.Image): The input image. | |
| Returns: | |
| Image.Image: The preprocessed image. | |
| """ | |
| width, height = image['composite'].size | |
| ratio = np.sqrt(1024. * 1024. / (width * height)) | |
| new_width, new_height = int(width * ratio), int(height * ratio) | |
| image = image['composite'].resize((new_width, new_height)) | |
| image = ImageOps.invert(image) | |
| print("image:",type(image)) | |
| prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
| print("params:", prompt, negative_prompt, style_name, num_steps, guidance_scale, controlnet_conditioning_scale) | |
| output = pipe_control( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=image, | |
| num_inference_steps=num_steps, | |
| controlnet_conditioning_scale=controlnet_conditioning_scale, | |
| guidance_scale=guidance_scale, | |
| width=new_width, | |
| height=new_height).images[0] | |
| processed_image = pipeline.preprocess_image(output) | |
| return (image, processed_image) | |
| def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]: | |
| """ | |
| Preprocess a list of input images. | |
| Args: | |
| images (List[Tuple[Image.Image, str]]): The input images. | |
| Returns: | |
| List[Image.Image]: The preprocessed images. | |
| """ | |
| images = [image[0] for image in images] | |
| processed_images = [pipeline.preprocess_image(image) for image in images] | |
| return processed_images | |
| def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
| return { | |
| 'gaussian': { | |
| **gs.init_params, | |
| '_xyz': gs._xyz.cpu().numpy(), | |
| '_features_dc': gs._features_dc.cpu().numpy(), | |
| '_scaling': gs._scaling.cpu().numpy(), | |
| '_rotation': gs._rotation.cpu().numpy(), | |
| '_opacity': gs._opacity.cpu().numpy(), | |
| }, | |
| 'mesh': { | |
| 'vertices': mesh.vertices.cpu().numpy(), | |
| 'faces': mesh.faces.cpu().numpy(), | |
| }, | |
| } | |
| def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
| gs = Gaussian( | |
| aabb=state['gaussian']['aabb'], | |
| sh_degree=state['gaussian']['sh_degree'], | |
| mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
| scaling_bias=state['gaussian']['scaling_bias'], | |
| opacity_bias=state['gaussian']['opacity_bias'], | |
| scaling_activation=state['gaussian']['scaling_activation'], | |
| ) | |
| gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
| gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
| gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
| gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
| gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
| mesh = edict( | |
| vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
| faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
| ) | |
| return gs, mesh | |
| def get_seed(randomize_seed: bool, seed: int) -> int: | |
| """ | |
| Get the random seed. | |
| """ | |
| return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
| def image_to_3d( | |
| image: Image.Image, | |
| multiimages: List[Tuple[Image.Image, str]], | |
| is_multiimage: bool, | |
| seed: int, | |
| ss_guidance_strength: float, | |
| ss_sampling_steps: int, | |
| slat_guidance_strength: float, | |
| slat_sampling_steps: int, | |
| multiimage_algo: Literal["multidiffusion", "stochastic"], | |
| req: gr.Request, | |
| ) -> Tuple[dict, str]: | |
| """ | |
| Convert an image to a 3D model. | |
| Args: | |
| image (Image.Image): The input image. | |
| multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode. | |
| is_multiimage (bool): Whether is in multi-image mode. | |
| seed (int): The random seed. | |
| ss_guidance_strength (float): The guidance strength for sparse structure generation. | |
| ss_sampling_steps (int): The number of sampling steps for sparse structure generation. | |
| slat_guidance_strength (float): The guidance strength for structured latent generation. | |
| slat_sampling_steps (int): The number of sampling steps for structured latent generation. | |
| multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation. | |
| Returns: | |
| dict: The information of the generated 3D model. | |
| str: The path to the video of the 3D model. | |
| """ | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| if not is_multiimage: | |
| outputs = pipeline.run( | |
| image[1], | |
| seed=seed, | |
| formats=["gaussian", "mesh"], | |
| preprocess_image=False, | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "cfg_strength": ss_guidance_strength, | |
| }, | |
| slat_sampler_params={ | |
| "steps": slat_sampling_steps, | |
| "cfg_strength": slat_guidance_strength, | |
| }, | |
| ) | |
| else: | |
| outputs = pipeline.run_multi_image( | |
| [image[0] for image in multiimages], | |
| seed=seed, | |
| formats=["gaussian", "mesh"], | |
| preprocess_image=False, | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "cfg_strength": ss_guidance_strength, | |
| }, | |
| slat_sampler_params={ | |
| "steps": slat_sampling_steps, | |
| "cfg_strength": slat_guidance_strength, | |
| }, | |
| mode=multiimage_algo, | |
| ) | |
| video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
| video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
| video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
| video_path = os.path.join(user_dir, 'sample.mp4') | |
| imageio.mimsave(video_path, video, fps=15) | |
| state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
| torch.cuda.empty_cache() | |
| return state, video_path | |
| def extract_glb( | |
| state: dict, | |
| mesh_simplify: float, | |
| texture_size: int, | |
| req: gr.Request, | |
| ) -> Tuple[str, str]: | |
| """ | |
| Extract a GLB file from the 3D model. | |
| Args: | |
| state (dict): The state of the generated 3D model. | |
| mesh_simplify (float): The mesh simplification factor. | |
| texture_size (int): The texture resolution. | |
| Returns: | |
| str: The path to the extracted GLB file. | |
| """ | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| gs, mesh = unpack_state(state) | |
| glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
| glb_path = os.path.join(user_dir, 'sample.glb') | |
| glb.export(glb_path) | |
| torch.cuda.empty_cache() | |
| return glb_path, glb_path | |
| def reset_do_preprocess(): | |
| return True | |
| def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: | |
| """ | |
| Extract a Gaussian file from the 3D model. | |
| Args: | |
| state (dict): The state of the generated 3D model. | |
| Returns: | |
| str: The path to the extracted Gaussian file. | |
| """ | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| gs, _ = unpack_state(state) | |
| gaussian_path = os.path.join(user_dir, 'sample.ply') | |
| gs.save_ply(gaussian_path) | |
| torch.cuda.empty_cache() | |
| return gaussian_path, gaussian_path | |
| def prepare_multi_example() -> List[Image.Image]: | |
| multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")])) | |
| images = [] | |
| for case in multi_case: | |
| _images = [] | |
| for i in range(1, 4): | |
| img = Image.open(f'assets/example_multi_image/{case}_{i}.png') | |
| W, H = img.size | |
| img = img.resize((int(W / H * 512), 512)) | |
| _images.append(np.array(img)) | |
| images.append(Image.fromarray(np.concatenate(_images, axis=1))) | |
| return images | |
| def split_image(image: Image.Image) -> List[Image.Image]: | |
| """ | |
| Split an image into multiple views. | |
| """ | |
| image = np.array(image) | |
| alpha = image[..., 3] | |
| alpha = np.any(alpha>0, axis=0) | |
| start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist() | |
| end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist() | |
| images = [] | |
| for s, e in zip(start_pos, end_pos): | |
| images.append(Image.fromarray(image[:, s:e+1])) | |
| return [preprocess_image(image) for image in images] | |
| with gr.Blocks(delete_cache=(600, 600)) as demo: | |
| gr.Markdown(""" | |
| ## Sketch to 3D with TRELLIS | |
| 1. Fast sketch to image with SDXL Flash, using [@xinsir](https://huggingface.co/xinsir) [scribble sdxl controlnet](https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0) and [sdxl flash](https://huggingface.co/sd-community/sdxl-flash) | |
| 2. Scalable and versatile image to 3D generation using [TRELLIS](https://trellis3d.github.io/) | |
| ### 🎨🖌️ draw or upload a sketch and click "Generate" to create a 3D asset ✨ | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| #image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300) | |
| with gr.Column(): | |
| image_prompt = gr.ImageMask(label="Input sketch", type="pil", image_mode="RGB", height=512, value={"background":Image.new("RGB", (512, 512), (255, 255, 255)), "layers":[Image.new("RGB", (512, 512), (255, 255, 255))], "composite":Image.new("RGB", (512, 512), (255, 255, 255))}) | |
| with gr.Row(): | |
| sketch_btn = gr.Button("process sketch") | |
| generate_btn = gr.Button("Generate 3D") | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt") | |
| style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) | |
| with gr.Accordion(label="Generation Settings", open=False): | |
| with gr.Tab(label="sketch-to-image generation"): | |
| negative_prompt = gr.Textbox(label="Negative prompt") | |
| num_steps = gr.Slider( | |
| label="Number of steps", | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=8, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.1, | |
| maximum=10.0, | |
| step=0.1, | |
| value=5, | |
| ) | |
| controlnet_conditioning_scale = gr.Slider( | |
| label="controlnet conditioning scale", | |
| minimum=0.5, | |
| maximum=5.0, | |
| step=0.01, | |
| value=0.85, | |
| ) | |
| with gr.Tab(label="3D generation"): | |
| seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| gr.Markdown("Stage 1: Sparse Structure Generation") | |
| with gr.Row(): | |
| ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| gr.Markdown("Stage 2: Structured Latent Generation") | |
| with gr.Row(): | |
| slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
| slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic") | |
| with gr.Tab(label="Multiple Images", id=1, visible=False) as multiimage_input_tab: | |
| multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3) | |
| gr.Markdown(""" | |
| Input different views of the object in separate images. | |
| *NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.* | |
| """) | |
| #generate_btn = gr.Button("Generate") | |
| with gr.Accordion(label="GLB Extraction Settings", open=False): | |
| mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
| texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
| with gr.Row(): | |
| extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
| extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
| gr.Markdown(""" | |
| *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* | |
| """) | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
| image_prompt_processed = ImageSlider(label="processed sketch", interactive=False, type="pil", height=512) | |
| model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300) | |
| with gr.Row(): | |
| download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
| download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
| is_multiimage = gr.State(False) | |
| do_preprocess = gr.State(True) | |
| output_buf = gr.State() | |
| #Example images at the bottom of the page | |
| with gr.Row(visible=False) as single_image_example: | |
| examples = gr.Examples( | |
| examples=[ | |
| f'assets/example_image/{image}' | |
| for image in os.listdir("assets/example_image") | |
| ], | |
| inputs=[image_prompt], | |
| fn=preprocess_image, | |
| outputs=[image_prompt_processed], | |
| run_on_click=True, | |
| examples_per_page=64, | |
| ) | |
| with gr.Row(visible=False) as multiimage_example: | |
| examples_multi = gr.Examples( | |
| examples=prepare_multi_example(), | |
| inputs=[image_prompt], | |
| fn=split_image, | |
| outputs=[multiimage_prompt], | |
| run_on_click=True, | |
| examples_per_page=8, | |
| ) | |
| # Handlers | |
| demo.load(start_session) | |
| demo.unload(end_session) | |
| # single_image_input_tab.select( | |
| # lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]), | |
| # outputs=[is_multiimage, single_image_example, multiimage_example] | |
| # ) | |
| multiimage_input_tab.select( | |
| lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]), | |
| outputs=[is_multiimage, single_image_example, multiimage_example] | |
| ) | |
| image_prompt.clear( | |
| fn=reset_canvas, | |
| outputs = [image_prompt] | |
| ) | |
| # image_prompt.upload( | |
| # preprocess_image, | |
| # inputs=[image_prompt, prompt, negative_prompt, style, do_preprocess], | |
| # outputs=[image_prompt, do_preprocess], | |
| # ) | |
| sketch_btn.click( | |
| get_seed, | |
| inputs=[randomize_seed, seed], | |
| outputs=[seed], | |
| ).then( | |
| preprocess_image, | |
| inputs=[image_prompt, prompt, negative_prompt, style, num_steps, guidance_scale, controlnet_conditioning_scale], | |
| outputs=[image_prompt_processed], | |
| ) | |
| multiimage_prompt.upload( | |
| preprocess_images, | |
| inputs=[multiimage_prompt], | |
| outputs=[multiimage_prompt], | |
| ) | |
| generate_btn.click( | |
| get_seed, | |
| inputs=[randomize_seed, seed], | |
| outputs=[seed], | |
| ).then( | |
| image_to_3d, | |
| inputs=[image_prompt_processed, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo], | |
| outputs=[output_buf, video_output], | |
| ).then( | |
| lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), | |
| outputs=[extract_glb_btn, extract_gs_btn], | |
| ) | |
| video_output.clear( | |
| lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), | |
| outputs=[extract_glb_btn, extract_gs_btn], | |
| ) | |
| extract_glb_btn.click( | |
| extract_glb, | |
| inputs=[output_buf, mesh_simplify, texture_size], | |
| outputs=[model_output, download_glb], | |
| ).then( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[download_glb], | |
| ) | |
| extract_gs_btn.click( | |
| extract_gaussian, | |
| inputs=[output_buf], | |
| outputs=[model_output, download_gs], | |
| ).then( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[download_gs], | |
| ) | |
| model_output.clear( | |
| lambda: gr.Button(interactive=False), | |
| outputs=[download_glb], | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
| pipeline.cuda() | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| #scribble controlnet | |
| controlnet = ControlNetModel.from_pretrained( | |
| "xinsir/controlnet-scribble-sdxl-1.0", | |
| torch_dtype=torch.float16 | |
| ) | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| pipe_control = StableDiffusionXLControlNetPipeline.from_pretrained( | |
| "sd-community/sdxl-flash", | |
| controlnet=controlnet, | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe_control.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_control.scheduler.config) | |
| pipe_control.to(device) | |
| try: | |
| pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg | |
| except: | |
| pass | |
| demo.launch() | |