Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
import random
|
| 5 |
+
from typing import Dict, Any, List
|
| 6 |
+
import json
|
| 7 |
+
|
| 8 |
+
# Load the dataset
|
| 9 |
+
def load_community_alignment_dataset():
|
| 10 |
+
"""Load the Facebook Community Alignment Dataset"""
|
| 11 |
+
try:
|
| 12 |
+
dataset = load_dataset("facebook/community-alignment-dataset")
|
| 13 |
+
return dataset
|
| 14 |
+
except Exception as e:
|
| 15 |
+
print(f"Error loading dataset: {e}")
|
| 16 |
+
return None
|
| 17 |
+
|
| 18 |
+
# Initialize dataset
|
| 19 |
+
dataset = load_community_alignment_dataset()
|
| 20 |
+
|
| 21 |
+
def format_conversation_turn(turn_data: Dict[str, Any], turn_number: int) -> str:
|
| 22 |
+
"""Format a conversation turn for display"""
|
| 23 |
+
if not turn_data:
|
| 24 |
+
return ""
|
| 25 |
+
|
| 26 |
+
prompt = turn_data.get('prompt', '')
|
| 27 |
+
responses = turn_data.get('responses', '')
|
| 28 |
+
preferred = turn_data.get('preferred_response', '')
|
| 29 |
+
|
| 30 |
+
formatted = f"**Turn {turn_number}**\n\n"
|
| 31 |
+
formatted += f"**Prompt:** {prompt}\n\n"
|
| 32 |
+
|
| 33 |
+
if responses:
|
| 34 |
+
formatted += "**Responses:**\n"
|
| 35 |
+
formatted += responses.replace('# Response ', '**Response ').replace(':\n', ':**\n')
|
| 36 |
+
formatted += "\n"
|
| 37 |
+
|
| 38 |
+
if preferred:
|
| 39 |
+
formatted += f"**Preferred Response:** {preferred.upper()}\n"
|
| 40 |
+
|
| 41 |
+
return formatted
|
| 42 |
+
|
| 43 |
+
def get_conversation_data(conversation_id: int) -> Dict[str, Any]:
|
| 44 |
+
"""Get conversation data by ID"""
|
| 45 |
+
if not dataset:
|
| 46 |
+
return None
|
| 47 |
+
|
| 48 |
+
# Search for conversation in the dataset
|
| 49 |
+
for split in dataset.keys():
|
| 50 |
+
for item in dataset[split]:
|
| 51 |
+
if item.get('conversation_id') == conversation_id:
|
| 52 |
+
return item
|
| 53 |
+
return None
|
| 54 |
+
|
| 55 |
+
def format_annotator_info(item: Dict[str, Any]) -> str:
|
| 56 |
+
"""Format annotator information"""
|
| 57 |
+
info = "**Annotator Information:**\n\n"
|
| 58 |
+
|
| 59 |
+
demographics = [
|
| 60 |
+
('Age', 'annotator_age'),
|
| 61 |
+
('Gender', 'annotator_gender'),
|
| 62 |
+
('Education', 'annotator_education_level'),
|
| 63 |
+
('Political', 'annotator_political'),
|
| 64 |
+
('Ethnicity', 'annotator_ethnicity'),
|
| 65 |
+
('Country', 'annotator_country')
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
for label, key in demographics:
|
| 69 |
+
value = item.get(key, 'N/A')
|
| 70 |
+
if value and value != 'None':
|
| 71 |
+
info += f"**{label}:** {value}\n"
|
| 72 |
+
|
| 73 |
+
return info
|
| 74 |
+
|
| 75 |
+
def display_conversation(conversation_id: int) -> tuple:
|
| 76 |
+
"""Display a conversation by ID"""
|
| 77 |
+
if not dataset:
|
| 78 |
+
return "Dataset not loaded", "", "", ""
|
| 79 |
+
|
| 80 |
+
item = get_conversation_data(conversation_id)
|
| 81 |
+
if not item:
|
| 82 |
+
return f"Conversation ID {conversation_id} not found", "", "", ""
|
| 83 |
+
|
| 84 |
+
# Format conversation turns
|
| 85 |
+
conversation_text = ""
|
| 86 |
+
|
| 87 |
+
# First turn
|
| 88 |
+
if item.get('first_turn_prompt'):
|
| 89 |
+
first_turn = {
|
| 90 |
+
'prompt': item['first_turn_prompt'],
|
| 91 |
+
'responses': item['first_turn_responses'],
|
| 92 |
+
'preferred_response': item['first_turn_preferred_response']
|
| 93 |
+
}
|
| 94 |
+
conversation_text += format_conversation_turn(first_turn, 1) + "\n"
|
| 95 |
+
|
| 96 |
+
# Second turn
|
| 97 |
+
if item.get('second_turn_prompt'):
|
| 98 |
+
second_turn = {
|
| 99 |
+
'prompt': item['second_turn_prompt'],
|
| 100 |
+
'responses': item['second_turn_responses'],
|
| 101 |
+
'preferred_response': item['second_turn_preferred_response']
|
| 102 |
+
}
|
| 103 |
+
conversation_text += format_conversation_turn(second_turn, 2) + "\n"
|
| 104 |
+
|
| 105 |
+
# Third turn
|
| 106 |
+
if item.get('third_turn_prompt'):
|
| 107 |
+
third_turn = {
|
| 108 |
+
'prompt': item['third_turn_prompt'],
|
| 109 |
+
'responses': item['third_turn_responses'],
|
| 110 |
+
'preferred_response': item['third_turn_preferred_response']
|
| 111 |
+
}
|
| 112 |
+
conversation_text += format_conversation_turn(third_turn, 3) + "\n"
|
| 113 |
+
|
| 114 |
+
# Fourth turn
|
| 115 |
+
if item.get('fourth_turn_prompt'):
|
| 116 |
+
fourth_turn = {
|
| 117 |
+
'prompt': item['fourth_turn_prompt'],
|
| 118 |
+
'responses': item['fourth_turn_responses'],
|
| 119 |
+
'preferred_response': item['fourth_turn_preferred_response']
|
| 120 |
+
}
|
| 121 |
+
conversation_text += format_conversation_turn(fourth_turn, 4) + "\n"
|
| 122 |
+
|
| 123 |
+
# Annotator information
|
| 124 |
+
annotator_info = format_annotator_info(item)
|
| 125 |
+
|
| 126 |
+
# Metadata
|
| 127 |
+
metadata = f"**Metadata:**\n\n"
|
| 128 |
+
metadata += f"**Conversation ID:** {item.get('conversation_id', 'N/A')}\n"
|
| 129 |
+
metadata += f"**Language:** {item.get('assigned_lang', 'N/A')}\n"
|
| 130 |
+
metadata += f"**Annotator ID:** {item.get('annotator_id', 'N/A')}\n"
|
| 131 |
+
metadata += f"**In Balanced Subset:** {item.get('in_balanced_subset', 'N/A')}\n"
|
| 132 |
+
metadata += f"**In Balanced Subset 10:** {item.get('in_balanced_subset_10', 'N/A')}\n"
|
| 133 |
+
metadata += f"**Is Pregenerated First Prompt:** {item.get('is_pregenerated_first_prompt', 'N/A')}\n"
|
| 134 |
+
|
| 135 |
+
# Raw JSON for debugging
|
| 136 |
+
raw_json = json.dumps(item, indent=2)
|
| 137 |
+
|
| 138 |
+
return conversation_text, annotator_info, metadata, raw_json
|
| 139 |
+
|
| 140 |
+
def get_random_conversation() -> int:
|
| 141 |
+
"""Get a random conversation ID"""
|
| 142 |
+
if not dataset:
|
| 143 |
+
return 0
|
| 144 |
+
|
| 145 |
+
# Get a random split and item
|
| 146 |
+
split = random.choice(list(dataset.keys()))
|
| 147 |
+
item = random.choice(dataset[split])
|
| 148 |
+
return item.get('conversation_id', 0)
|
| 149 |
+
|
| 150 |
+
def get_dataset_stats() -> str:
|
| 151 |
+
"""Get dataset statistics"""
|
| 152 |
+
if not dataset:
|
| 153 |
+
return "Dataset not loaded"
|
| 154 |
+
|
| 155 |
+
stats = "**Dataset Statistics:**\n\n"
|
| 156 |
+
|
| 157 |
+
for split_name, split_data in dataset.items():
|
| 158 |
+
stats += f"**{split_name}:** {len(split_data)} conversations\n"
|
| 159 |
+
|
| 160 |
+
# Sample some metadata
|
| 161 |
+
if 'train' in dataset and len(dataset['train']) > 0:
|
| 162 |
+
sample_item = dataset['train'][0]
|
| 163 |
+
stats += f"\n**Sample Fields:**\n"
|
| 164 |
+
for key in list(sample_item.keys())[:10]: # Show first 10 fields
|
| 165 |
+
stats += f"- {key}\n"
|
| 166 |
+
|
| 167 |
+
return stats
|
| 168 |
+
|
| 169 |
+
def search_conversations(query: str, field: str) -> str:
|
| 170 |
+
"""Search conversations by field"""
|
| 171 |
+
if not dataset or not query:
|
| 172 |
+
return "Please provide a search query"
|
| 173 |
+
|
| 174 |
+
results = []
|
| 175 |
+
query_lower = query.lower()
|
| 176 |
+
|
| 177 |
+
for split_name, split_data in dataset.items():
|
| 178 |
+
for item in split_data[:100]: # Limit search to first 100 items per split
|
| 179 |
+
if field in item and item[field]:
|
| 180 |
+
field_value = str(item[field]).lower()
|
| 181 |
+
if query_lower in field_value:
|
| 182 |
+
results.append({
|
| 183 |
+
'conversation_id': item.get('conversation_id'),
|
| 184 |
+
'split': split_name,
|
| 185 |
+
'field_value': str(item[field])[:100] + "..." if len(str(item[field])) > 100 else str(item[field])
|
| 186 |
+
})
|
| 187 |
+
|
| 188 |
+
if not results:
|
| 189 |
+
return f"No results found for '{query}' in field '{field}'"
|
| 190 |
+
|
| 191 |
+
result_text = f"**Search Results for '{query}' in '{field}':**\n\n"
|
| 192 |
+
for i, result in enumerate(results[:10]): # Limit to 10 results
|
| 193 |
+
result_text += f"{i+1}. **Conversation ID:** {result['conversation_id']} (Split: {result['split']})\n"
|
| 194 |
+
result_text += f" **Value:** {result['field_value']}\n\n"
|
| 195 |
+
|
| 196 |
+
return result_text
|
| 197 |
+
|
| 198 |
+
# Create the Gradio interface
|
| 199 |
+
def create_interface():
|
| 200 |
+
with gr.Blocks(title="Facebook Community Alignment Dataset Viewer", theme=gr.themes.Soft()) as demo:
|
| 201 |
+
gr.Markdown("# π€ Facebook Community Alignment Dataset Viewer")
|
| 202 |
+
gr.Markdown("Explore conversations, responses, and annotations from the Facebook Community Alignment Dataset.")
|
| 203 |
+
|
| 204 |
+
with gr.Tabs():
|
| 205 |
+
# Tab 1: Conversation Viewer
|
| 206 |
+
with gr.Tab("Conversation Viewer"):
|
| 207 |
+
with gr.Row():
|
| 208 |
+
with gr.Column(scale=1):
|
| 209 |
+
conversation_id_input = gr.Number(
|
| 210 |
+
label="Conversation ID",
|
| 211 |
+
value=get_random_conversation(),
|
| 212 |
+
interactive=True
|
| 213 |
+
)
|
| 214 |
+
random_btn = gr.Button("π² Random Conversation", variant="secondary")
|
| 215 |
+
load_btn = gr.Button("π Load Conversation", variant="primary")
|
| 216 |
+
|
| 217 |
+
with gr.Column(scale=3):
|
| 218 |
+
conversation_display = gr.Markdown(label="Conversation")
|
| 219 |
+
annotator_display = gr.Markdown(label="Annotator Information")
|
| 220 |
+
metadata_display = gr.Markdown(label="Metadata")
|
| 221 |
+
raw_json_display = gr.Code(label="Raw JSON", language="json")
|
| 222 |
+
|
| 223 |
+
# Connect buttons
|
| 224 |
+
random_btn.click(
|
| 225 |
+
fn=get_random_conversation,
|
| 226 |
+
outputs=conversation_id_input
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
load_btn.click(
|
| 230 |
+
fn=display_conversation,
|
| 231 |
+
inputs=conversation_id_input,
|
| 232 |
+
outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
conversation_id_input.submit(
|
| 236 |
+
fn=display_conversation,
|
| 237 |
+
inputs=conversation_id_input,
|
| 238 |
+
outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# Tab 2: Dataset Statistics
|
| 242 |
+
with gr.Tab("Dataset Statistics"):
|
| 243 |
+
stats_btn = gr.Button("π Load Statistics", variant="primary")
|
| 244 |
+
stats_display = gr.Markdown(label="Dataset Statistics")
|
| 245 |
+
|
| 246 |
+
stats_btn.click(
|
| 247 |
+
fn=get_dataset_stats,
|
| 248 |
+
outputs=stats_display
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
# Tab 3: Search
|
| 252 |
+
with gr.Tab("Search Conversations"):
|
| 253 |
+
with gr.Row():
|
| 254 |
+
with gr.Column(scale=1):
|
| 255 |
+
search_query = gr.Textbox(
|
| 256 |
+
label="Search Query",
|
| 257 |
+
placeholder="Enter search term...",
|
| 258 |
+
interactive=True
|
| 259 |
+
)
|
| 260 |
+
search_field = gr.Dropdown(
|
| 261 |
+
label="Search Field",
|
| 262 |
+
choices=[
|
| 263 |
+
"first_turn_prompt",
|
| 264 |
+
"second_turn_prompt",
|
| 265 |
+
"third_turn_prompt",
|
| 266 |
+
"annotator_country",
|
| 267 |
+
"annotator_age",
|
| 268 |
+
"annotator_gender",
|
| 269 |
+
"assigned_lang"
|
| 270 |
+
],
|
| 271 |
+
value="first_turn_prompt",
|
| 272 |
+
interactive=True
|
| 273 |
+
)
|
| 274 |
+
search_btn = gr.Button("π Search", variant="primary")
|
| 275 |
+
|
| 276 |
+
with gr.Column(scale=2):
|
| 277 |
+
search_results = gr.Markdown(label="Search Results")
|
| 278 |
+
|
| 279 |
+
search_btn.click(
|
| 280 |
+
fn=search_conversations,
|
| 281 |
+
inputs=[search_query, search_field],
|
| 282 |
+
outputs=search_results
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
search_query.submit(
|
| 286 |
+
fn=search_conversations,
|
| 287 |
+
inputs=[search_query, search_field],
|
| 288 |
+
outputs=search_results
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
# Tab 4: About
|
| 292 |
+
with gr.Tab("About"):
|
| 293 |
+
gr.Markdown("""
|
| 294 |
+
## About the Facebook Community Alignment Dataset
|
| 295 |
+
|
| 296 |
+
This dataset contains conversations with multiple response options and human annotations indicating which responses are preferred by different demographic groups.
|
| 297 |
+
|
| 298 |
+
### Dataset Structure:
|
| 299 |
+
- **Conversations**: Multi-turn dialogues with prompts and multiple response options
|
| 300 |
+
- **Annotations**: Human preferences for different response options
|
| 301 |
+
- **Demographics**: Annotator information including age, gender, education, political views, ethnicity, and country
|
| 302 |
+
|
| 303 |
+
### Key Features:
|
| 304 |
+
- Multi-turn conversations (up to 4 turns)
|
| 305 |
+
- 4 response options per turn (A, B, C, D)
|
| 306 |
+
- Human preference annotations
|
| 307 |
+
- Diverse annotator demographics
|
| 308 |
+
- Balanced subsets for analysis
|
| 309 |
+
|
| 310 |
+
### Use Cases:
|
| 311 |
+
- Studying response preferences across demographics
|
| 312 |
+
- Training models to generate community-aligned responses
|
| 313 |
+
- Analyzing conversation dynamics
|
| 314 |
+
- Understanding cultural and demographic differences in communication preferences
|
| 315 |
+
|
| 316 |
+
### Citation:
|
| 317 |
+
If you use this dataset, please cite the original Facebook research paper.
|
| 318 |
+
""")
|
| 319 |
+
|
| 320 |
+
# Auto-load a random conversation on startup
|
| 321 |
+
demo.load(
|
| 322 |
+
fn=display_conversation,
|
| 323 |
+
inputs=conversation_id_input,
|
| 324 |
+
outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
return demo
|
| 328 |
+
|
| 329 |
+
# Create and launch the app
|
| 330 |
+
if __name__ == "__main__":
|
| 331 |
+
demo = create_interface()
|
| 332 |
+
demo.launch(
|
| 333 |
+
server_name="0.0.0.0",
|
| 334 |
+
server_port=7860,
|
| 335 |
+
share=False,
|
| 336 |
+
show_error=True
|
| 337 |
+
)
|