Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import os | |
| ## | |
| # 获取全部环境变量 | |
| env_vars = os.environ | |
| # 遍历并打印环境变量 | |
| for key, value in env_vars.items(): | |
| print(f"{key}: {value}") | |
| ## | |
| import subprocess | |
| # 运行nvidia-smi | |
| result = subprocess.run( | |
| ['nvidia-smi'], text=True | |
| ) | |
| import spaces | |
| from threading import Thread | |
| from typing import Iterator | |
| import gradio as gr | |
| import torch | |
| from modelscope import AutoModelForCausalLM, AutoTokenizer | |
| from transformers import TextIteratorStreamer | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| ## | |
| # 检查CUDA是否可用 | |
| def print_gpu(): | |
| result = subprocess.run( | |
| ['nvidia-smi'], text=True | |
| ) | |
| result = subprocess.run( | |
| ['ps', '-ef'], text=True | |
| ) | |
| print("当前进程ID:", os.getpid()) | |
| print("父进程ID:", os.getppid()) | |
| if torch.cuda.is_available(): | |
| print("CUDA is available. Listing available GPUs:") | |
| # 获取并打印GPU数量 | |
| num_gpus = torch.cuda.device_count() | |
| for i in range(num_gpus): | |
| print(f"GPU {i}: {torch.cuda.get_device_name(i)}") | |
| # 其他相关信息,例如内存 | |
| print(f" Memory Allocated: {torch.cuda.memory_allocated(i) / 1024 ** 2:.0f} MB") | |
| print(f" Memory Reserved: {torch.cuda.memory_reserved(i) / 1024 ** 2:.0f} MB") | |
| else: | |
| print("CUDA is not available.") | |
| ## | |
| os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
| print_gpu() | |
| os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7,8' | |
| print_gpu() | |
| os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14' | |
| print_gpu() | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
| if torch.cuda.is_available(): | |
| model_id = "Qwen/Qwen1.5-14B-Chat" | |
| model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| tokenizer.use_default_system_prompt = False | |
| def generate( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| system_prompt: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> Iterator[str]: | |
| print_gpu() | |
| conversation = [] | |
| if system_prompt: | |
| conversation.append({"role": "system", "content": system_prompt}) | |
| for user, assistant in chat_history: | |
| conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template(conversation, tokenize=False,add_generation_prompt=True) | |
| input_ids = tokenizer([input_ids],return_tensors="pt").to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| input_ids=input_ids.input_ids, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| #dictionary update sequence element #0 has length 19; 2 is required | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| #outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| print(outputs) | |
| yield outputs | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Textbox(label="System prompt", lines=6), | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0.1, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.6, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.9, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.2, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["你好!你是谁?"], | |
| ["请简单介绍一下大语言模型?"], | |
| ["请讲一个小人物成功的故事."], | |
| ["浙江的省会在哪里?"], | |
| ["写一篇100字的文章,题目是'人工智能开源的优势'"], | |
| ], | |
| ) | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown("""<p align="center"><img src="https://modelscope.cn/api/v1/models/qwen/Qwen-VL-Chat/repo?Revision=master&FilePath=assets/logo.jpg&View=true" style="height: 80px"/><p>""") | |
| gr.Markdown("""<center><font size=8>Qwen1.5-1.8B-Chat Bot👾</center>""") | |
| gr.Markdown("""<center><font size=4>通义千问1.5-1.8B(Qwen1.5-1.8B) 是阿里云研发的通义千问大模型系列的70亿参数规模的模型。</center>""") | |
| chat_interface.render() | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() |