Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import os
|
| 3 |
+
os.system('pip install transformers -U')
|
| 4 |
+
os.system('pip install modelscope -U')
|
| 5 |
+
os.system('pip install accelerate')
|
| 6 |
+
from threading import Thread
|
| 7 |
+
from typing import Iterator
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import torch
|
| 11 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
| 12 |
+
from transformers import TextIteratorStreamer
|
| 13 |
+
|
| 14 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 15 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 16 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
if not torch.cuda.is_available():
|
| 20 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
if torch.cuda.is_available():
|
| 24 |
+
model_id = "qwen/Qwen1.5-1.8B-Chat"
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 27 |
+
tokenizer.use_default_system_prompt = False
|
| 28 |
+
|
| 29 |
+
@spaces.GPU
|
| 30 |
+
def generate(
|
| 31 |
+
message: str,
|
| 32 |
+
chat_history: list[tuple[str, str]],
|
| 33 |
+
system_prompt: str,
|
| 34 |
+
max_new_tokens: int = 1024,
|
| 35 |
+
temperature: float = 0.6,
|
| 36 |
+
top_p: float = 0.9,
|
| 37 |
+
top_k: int = 50,
|
| 38 |
+
repetition_penalty: float = 1.2,
|
| 39 |
+
) -> Iterator[str]:
|
| 40 |
+
conversation = []
|
| 41 |
+
if system_prompt:
|
| 42 |
+
conversation.append({"role": "system", "content": system_prompt})
|
| 43 |
+
for user, assistant in chat_history:
|
| 44 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
| 45 |
+
conversation.append({"role": "user", "content": message})
|
| 46 |
+
|
| 47 |
+
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False,add_generation_prompt=True)
|
| 48 |
+
input_ids = tokenizer([input_ids],return_tensors="pt").to(model.device)
|
| 49 |
+
|
| 50 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 51 |
+
generate_kwargs = dict(
|
| 52 |
+
input_ids=input_ids.input_ids,
|
| 53 |
+
streamer=streamer,
|
| 54 |
+
max_new_tokens=max_new_tokens,
|
| 55 |
+
do_sample=True,
|
| 56 |
+
top_p=top_p,
|
| 57 |
+
top_k=top_k,
|
| 58 |
+
temperature=temperature,
|
| 59 |
+
repetition_penalty=repetition_penalty,
|
| 60 |
+
)
|
| 61 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 62 |
+
t.start()
|
| 63 |
+
#dictionary update sequence element #0 has length 19; 2 is required
|
| 64 |
+
|
| 65 |
+
outputs = []
|
| 66 |
+
for text in streamer:
|
| 67 |
+
outputs.append(text)
|
| 68 |
+
yield "".join(outputs)
|
| 69 |
+
|
| 70 |
+
#outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 71 |
+
print(outputs)
|
| 72 |
+
#yield outputs
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
chat_interface = gr.ChatInterface(
|
| 76 |
+
fn=generate,
|
| 77 |
+
additional_inputs=[
|
| 78 |
+
gr.Textbox(label="System prompt", lines=6),
|
| 79 |
+
gr.Slider(
|
| 80 |
+
label="Max new tokens",
|
| 81 |
+
minimum=1,
|
| 82 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
| 83 |
+
step=1,
|
| 84 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
| 85 |
+
),
|
| 86 |
+
gr.Slider(
|
| 87 |
+
label="Temperature",
|
| 88 |
+
minimum=0.1,
|
| 89 |
+
maximum=4.0,
|
| 90 |
+
step=0.1,
|
| 91 |
+
value=0.6,
|
| 92 |
+
),
|
| 93 |
+
gr.Slider(
|
| 94 |
+
label="Top-p (nucleus sampling)",
|
| 95 |
+
minimum=0.05,
|
| 96 |
+
maximum=1.0,
|
| 97 |
+
step=0.05,
|
| 98 |
+
value=0.9,
|
| 99 |
+
),
|
| 100 |
+
gr.Slider(
|
| 101 |
+
label="Top-k",
|
| 102 |
+
minimum=1,
|
| 103 |
+
maximum=1000,
|
| 104 |
+
step=1,
|
| 105 |
+
value=50,
|
| 106 |
+
),
|
| 107 |
+
gr.Slider(
|
| 108 |
+
label="Repetition penalty",
|
| 109 |
+
minimum=1.0,
|
| 110 |
+
maximum=2.0,
|
| 111 |
+
step=0.05,
|
| 112 |
+
value=1.2,
|
| 113 |
+
),
|
| 114 |
+
],
|
| 115 |
+
stop_btn=None,
|
| 116 |
+
examples=[
|
| 117 |
+
["你好!你是谁?"],
|
| 118 |
+
["请简单介绍一下大语言模型?"],
|
| 119 |
+
["请讲一个小人物成功的故事."],
|
| 120 |
+
["浙江的省会在哪里?"],
|
| 121 |
+
["写一篇100字的文章,题目是'人工智能开源的优势'"],
|
| 122 |
+
],
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
with gr.Blocks(css="style.css") as demo:
|
| 126 |
+
gr.Markdown("""<p align="center"><img src="https://modelscope.cn/api/v1/models/qwen/Qwen-VL-Chat/repo?Revision=master&FilePath=assets/logo.jpg&View=true" style="height: 80px"/><p>""")
|
| 127 |
+
gr.Markdown("""<center><font size=8>Qwen1.5-1.8B-Chat Bot👾</center>""")
|
| 128 |
+
gr.Markdown("""<center><font size=4>通义千问1.5-1.8B(Qwen1.5-1.8B) 是阿里云研发的通义千问大模型系列的70亿参数规模的模型。</center>""")
|
| 129 |
+
chat_interface.render()
|
| 130 |
+
|
| 131 |
+
if __name__ == "__main__":
|
| 132 |
+
demo.queue(max_size=20).launch()
|