Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,88 +22,84 @@ model.to(device)
|
|
| 22 |
processor = AutoProcessor.from_pretrained("DAMO-NLP-SG/VideoLLaMA3-7B", trust_remote_code=True)
|
| 23 |
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
if
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
]
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
with gr.
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
input_text
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
[chatbot],
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
def _on_video_upload(self, messages, video):
|
| 90 |
if video is not None:
|
| 91 |
# messages.append({"role": "user", "content": gr.Video(video)})
|
| 92 |
messages.append({"role": "user", "content": {"path": video}})
|
| 93 |
return messages, None
|
| 94 |
-
|
| 95 |
-
def _on_image_upload(
|
| 96 |
if image is not None:
|
| 97 |
# messages.append({"role": "user", "content": gr.Image(image)})
|
| 98 |
messages.append({"role": "user", "content": {"path": image}})
|
| 99 |
return messages, None
|
| 100 |
-
|
| 101 |
-
def _on_text_submit(
|
| 102 |
messages.append({"role": "user", "content": text})
|
| 103 |
return messages, ""
|
| 104 |
-
|
| 105 |
@spaces.GPU(duration=120)
|
| 106 |
-
def _predict(
|
| 107 |
fps, max_frames):
|
| 108 |
if len(input_text) > 0:
|
| 109 |
messages.append({"role": "user", "content": input_text})
|
|
@@ -120,58 +116,51 @@ class VideoLLaMA3GradioInterface(object):
|
|
| 120 |
contents.append(message["content"])
|
| 121 |
else:
|
| 122 |
media_path = message["content"][0]
|
| 123 |
-
if media_path.endswith(
|
| 124 |
contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}})
|
| 125 |
-
elif media_path.endswith(
|
| 126 |
contents.append({"type": "image", "image": {"image_path": media_path}})
|
| 127 |
else:
|
| 128 |
raise ValueError(f"Unsupported media type: {media_path}")
|
| 129 |
-
|
| 130 |
if len(contents):
|
| 131 |
new_messages.append({"role": "user", "content": contents})
|
| 132 |
-
|
| 133 |
if len(new_messages) == 0 or new_messages[-1]["role"] != "user":
|
| 134 |
return messages
|
| 135 |
-
|
| 136 |
generation_config = {
|
| 137 |
"do_sample": do_sample,
|
| 138 |
"temperature": temperature,
|
| 139 |
"top_p": top_p,
|
| 140 |
"max_new_tokens": max_new_tokens
|
| 141 |
}
|
| 142 |
-
|
| 143 |
inputs = processor(
|
| 144 |
conversation=new_messages,
|
| 145 |
add_system_prompt=True,
|
| 146 |
add_generation_prompt=True,
|
| 147 |
return_tensors="pt"
|
| 148 |
)
|
| 149 |
-
inputs = {k: v.to(
|
| 150 |
if "pixel_values" in inputs:
|
| 151 |
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
|
| 152 |
-
|
| 153 |
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 154 |
generation_kwargs = {
|
| 155 |
**inputs,
|
| 156 |
**generation_config,
|
| 157 |
"streamer": streamer,
|
| 158 |
}
|
| 159 |
-
|
| 160 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 161 |
thread.start()
|
| 162 |
-
|
| 163 |
messages.append({"role": "assistant", "content": ""})
|
| 164 |
for token in streamer:
|
| 165 |
messages[-1]['content'] += token
|
| 166 |
yield messages
|
| 167 |
|
| 168 |
-
def launch(self):
|
| 169 |
-
self.interface.launch(**self.server_kwargs)
|
| 170 |
-
|
| 171 |
|
| 172 |
if __name__ == "__main__":
|
| 173 |
-
interface = VideoLLaMA3GradioInterface(
|
| 174 |
-
device=device,
|
| 175 |
-
example_dir="./examples",
|
| 176 |
-
)
|
| 177 |
interface.launch()
|
|
|
|
| 22 |
processor = AutoProcessor.from_pretrained("DAMO-NLP-SG/VideoLLaMA3-7B", trust_remote_code=True)
|
| 23 |
|
| 24 |
|
| 25 |
+
example_dir = "./examples"
|
| 26 |
+
image_formats = ("png", "jpg", "jpeg")
|
| 27 |
+
video_formats = ("mp4",)
|
| 28 |
+
|
| 29 |
+
image_examples, video_examples = [], []
|
| 30 |
+
if example_dir is not None:
|
| 31 |
+
example_files = [
|
| 32 |
+
osp.join(example_dir, f) for f in os.listdir(example_dir)
|
| 33 |
+
]
|
| 34 |
+
for example_file in example_files:
|
| 35 |
+
if example_file.endswith(image_formats):
|
| 36 |
+
image_examples.append([example_file])
|
| 37 |
+
elif example_file.endswith(video_formats):
|
| 38 |
+
video_examples.append([example_file])
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
with gr.Blocks() as interface:
|
| 42 |
+
gr.Markdown(HEADER)
|
| 43 |
+
with gr.Row():
|
| 44 |
+
chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=710)
|
| 45 |
+
|
| 46 |
+
with gr.Column():
|
| 47 |
+
with gr.Tab(label="Input"):
|
| 48 |
+
|
| 49 |
+
with gr.Row():
|
| 50 |
+
input_video = gr.Video(sources=["upload"], label="Upload Video")
|
| 51 |
+
input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image")
|
| 52 |
+
|
| 53 |
+
if len(image_examples):
|
| 54 |
+
gr.Examples(image_examples, inputs=[input_image], label="Example Images")
|
| 55 |
+
if len(video_examples):
|
| 56 |
+
gr.Examples(video_examples, inputs=[input_video], label="Example Videos")
|
| 57 |
+
|
| 58 |
+
input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit")
|
| 59 |
+
|
| 60 |
+
submit_button = gr.Button("Generate")
|
| 61 |
+
|
| 62 |
+
with gr.Tab(label="Configure"):
|
| 63 |
+
with gr.Accordion("Generation Config", open=True):
|
| 64 |
+
do_sample = gr.Checkbox(value=True, label="Do Sample")
|
| 65 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature")
|
| 66 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
| 67 |
+
max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens")
|
| 68 |
+
|
| 69 |
+
with gr.Accordion("Video Config", open=True):
|
| 70 |
+
fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS")
|
| 71 |
+
max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames")
|
| 72 |
+
|
| 73 |
+
input_video.change(_on_video_upload, [chatbot, input_video], [chatbot, input_video])
|
| 74 |
+
input_image.change(_on_image_upload, [chatbot, input_image], [chatbot, input_image])
|
| 75 |
+
input_text.submit(_on_text_submit, [chatbot, input_text], [chatbot, input_text])
|
| 76 |
+
submit_button.click(
|
| 77 |
+
_predict,
|
| 78 |
+
[
|
| 79 |
+
chatbot, input_text, do_sample, temperature, top_p, max_new_tokens,
|
| 80 |
+
fps, max_frames
|
| 81 |
+
],
|
| 82 |
+
[chatbot],
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
def _on_video_upload(messages, video):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
if video is not None:
|
| 87 |
# messages.append({"role": "user", "content": gr.Video(video)})
|
| 88 |
messages.append({"role": "user", "content": {"path": video}})
|
| 89 |
return messages, None
|
| 90 |
+
|
| 91 |
+
def _on_image_upload(messages, image):
|
| 92 |
if image is not None:
|
| 93 |
# messages.append({"role": "user", "content": gr.Image(image)})
|
| 94 |
messages.append({"role": "user", "content": {"path": image}})
|
| 95 |
return messages, None
|
| 96 |
+
|
| 97 |
+
def _on_text_submit(messages, text):
|
| 98 |
messages.append({"role": "user", "content": text})
|
| 99 |
return messages, ""
|
| 100 |
+
|
| 101 |
@spaces.GPU(duration=120)
|
| 102 |
+
def _predict(messages, input_text, do_sample, temperature, top_p, max_new_tokens,
|
| 103 |
fps, max_frames):
|
| 104 |
if len(input_text) > 0:
|
| 105 |
messages.append({"role": "user", "content": input_text})
|
|
|
|
| 116 |
contents.append(message["content"])
|
| 117 |
else:
|
| 118 |
media_path = message["content"][0]
|
| 119 |
+
if media_path.endswith(video_formats):
|
| 120 |
contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}})
|
| 121 |
+
elif media_path.endswith(image_formats):
|
| 122 |
contents.append({"type": "image", "image": {"image_path": media_path}})
|
| 123 |
else:
|
| 124 |
raise ValueError(f"Unsupported media type: {media_path}")
|
| 125 |
+
|
| 126 |
if len(contents):
|
| 127 |
new_messages.append({"role": "user", "content": contents})
|
| 128 |
+
|
| 129 |
if len(new_messages) == 0 or new_messages[-1]["role"] != "user":
|
| 130 |
return messages
|
| 131 |
+
|
| 132 |
generation_config = {
|
| 133 |
"do_sample": do_sample,
|
| 134 |
"temperature": temperature,
|
| 135 |
"top_p": top_p,
|
| 136 |
"max_new_tokens": max_new_tokens
|
| 137 |
}
|
| 138 |
+
|
| 139 |
inputs = processor(
|
| 140 |
conversation=new_messages,
|
| 141 |
add_system_prompt=True,
|
| 142 |
add_generation_prompt=True,
|
| 143 |
return_tensors="pt"
|
| 144 |
)
|
| 145 |
+
inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
| 146 |
if "pixel_values" in inputs:
|
| 147 |
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
|
| 148 |
+
|
| 149 |
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 150 |
generation_kwargs = {
|
| 151 |
**inputs,
|
| 152 |
**generation_config,
|
| 153 |
"streamer": streamer,
|
| 154 |
}
|
| 155 |
+
|
| 156 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 157 |
thread.start()
|
| 158 |
+
|
| 159 |
messages.append({"role": "assistant", "content": ""})
|
| 160 |
for token in streamer:
|
| 161 |
messages[-1]['content'] += token
|
| 162 |
yield messages
|
| 163 |
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
interface.launch()
|