Spaces:
Runtime error
Runtime error
Commit
·
054d7f8
1
Parent(s):
3425021
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import openai
|
| 3 |
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
from langchain.prompts import PromptTemplate
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def process(api, caption, category, asr, ocr):
|
|
@@ -10,19 +12,69 @@ def process(api, caption, category, asr, ocr):
|
|
| 10 |
preference = "兴趣标签"
|
| 11 |
example = "例如,给定一个视频,它的\"标题\"为\"长安系最便宜的轿车,4W起很多人都看不上它,但我知道车只是代步工具,又需要什么面子呢" \
|
| 12 |
"!\",\"类别\"为\"汽车\",\"ocr\"为\"长安系最便宜的一款轿车\",\"asr\"为\"我不否认现在的国产和合资还有一定的差距," \
|
| 13 |
-
"但确实是他们让我们5万开了MP V8万开上了轿车,10万开张了ICV15万开张了大七座。\"
|
| 14 |
-
"
|
| 15 |
|
| 16 |
prompt = PromptTemplate(
|
| 17 |
input_variables=["preference", "caption", "ocr", "asr", "category", "example"],
|
| 18 |
-
template="
|
| 19 |
"于两字的标签形式进行表达,以顿号隔开。{example}那么,给定一个新的视频,它的\"标题\"为\"{caption}\",\"类别\"为"
|
| 20 |
"\"{category}\",\"ocr\"为\"{ocr}\",\"asr\"为\"{asr}\",请推断出该视频的\"{preference}\":"
|
| 21 |
)
|
| 22 |
|
| 23 |
text = prompt.format(preference=preference, caption=caption, category=category, ocr=ocr, asr=asr, example=example)
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
with gr.Blocks() as demo:
|
|
@@ -39,4 +91,4 @@ with gr.Blocks() as demo:
|
|
| 39 |
|
| 40 |
|
| 41 |
if __name__ == "__main__":
|
| 42 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
import openai
|
| 4 |
|
| 5 |
from sentence_transformers import SentenceTransformer
|
| 6 |
from langchain.prompts import PromptTemplate
|
| 7 |
+
from collections import Counter
|
| 8 |
|
| 9 |
|
| 10 |
def process(api, caption, category, asr, ocr):
|
|
|
|
| 12 |
preference = "兴趣标签"
|
| 13 |
example = "例如,给定一个视频,它的\"标题\"为\"长安系最便宜的轿车,4W起很多人都看不上它,但我知道车只是代步工具,又需要什么面子呢" \
|
| 14 |
"!\",\"类别\"为\"汽车\",\"ocr\"为\"长安系最便宜的一款轿车\",\"asr\"为\"我不否认现在的国产和合资还有一定的差距," \
|
| 15 |
+
"但确实是他们让我们5万开了MP V8万开上了轿车,10万开张了ICV15万开张了大七座。\",\"{}\"生成机器人推断出合理的\"{}\"为\"" \
|
| 16 |
+
"长安轿车报价、最便宜的长安轿车、新款长安轿车\"。".format(preference, preference)
|
| 17 |
|
| 18 |
prompt = PromptTemplate(
|
| 19 |
input_variables=["preference", "caption", "ocr", "asr", "category", "example"],
|
| 20 |
+
template="你是一个视频的\"{preference}\"生成机器人,根据输入的视频标题、类别、ocr、asr推理出合理的\"{preference}\",以多个多"
|
| 21 |
"于两字的标签形式进行表达,以顿号隔开。{example}那么,给定一个新的视频,它的\"标题\"为\"{caption}\",\"类别\"为"
|
| 22 |
"\"{category}\",\"ocr\"为\"{ocr}\",\"asr\"为\"{asr}\",请推断出该视频的\"{preference}\":"
|
| 23 |
)
|
| 24 |
|
| 25 |
text = prompt.format(preference=preference, caption=caption, category=category, ocr=ocr, asr=asr, example=example)
|
| 26 |
|
| 27 |
+
try:
|
| 28 |
+
completion = openai.ChatCompletion.create(
|
| 29 |
+
model="gpt-3.5-turbo",
|
| 30 |
+
messages=[{"role": "user", "content": text}],
|
| 31 |
+
temperature=1.5,
|
| 32 |
+
n=5
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
res = []
|
| 36 |
+
for j in range(5):
|
| 37 |
+
ans = completion.choices[j].message["content"].strip()
|
| 38 |
+
ans = ans.replace("\n", "")
|
| 39 |
+
ans = ans.replace("。", "")
|
| 40 |
+
ans = ans.replace(",", "、")
|
| 41 |
+
res += ans.split('、')
|
| 42 |
+
|
| 43 |
+
tag_count = Counter(res)
|
| 44 |
+
tag_count = sorted(tag_count.items(), key=lambda x: x[1], reverse=True)[:10]
|
| 45 |
+
|
| 46 |
+
tags_embed = np.load('./tag_data/tags_embed.npy')
|
| 47 |
+
tags_dis = np.load('./tag_data/tags_dis.npy')
|
| 48 |
+
|
| 49 |
+
candidate_tags = [_[0] for _ in tag_count]
|
| 50 |
+
encoder = SentenceTransformer("hfl/chinese-roberta-wwm-ext-large")
|
| 51 |
+
candidate_tags_embed = encoder.encode(candidate_tags)
|
| 52 |
+
candidate_tags_dis = [np.sqrt(np.dot(_, _.T)) for _ in candidate_tags_embed]
|
| 53 |
+
|
| 54 |
+
scores = np.dot(candidate_tags_embed, tags_embed.T)
|
| 55 |
+
f = open('./tag_data/tags.txt', 'r')
|
| 56 |
+
all_tags = []
|
| 57 |
+
for line in f.readlines():
|
| 58 |
+
all_tags.append(line.strip())
|
| 59 |
+
f.close()
|
| 60 |
+
|
| 61 |
+
final_ans = []
|
| 62 |
+
for i in range(scores.shape[0]):
|
| 63 |
+
for j in range(scores.shape[1]):
|
| 64 |
+
score = scores[i][j] / (candidate_tags_dis[i] * tags_dis[j])
|
| 65 |
+
if score > 0.8:
|
| 66 |
+
final_ans.append(all_tags[j])
|
| 67 |
+
|
| 68 |
+
print(final_ans)
|
| 69 |
+
|
| 70 |
+
final_ans = Counter(final_ans)
|
| 71 |
+
final_ans = sorted(final_ans.items(), key=lambda x: x[1], reverse=True)[:5]
|
| 72 |
+
final_ans = [_[0] for _ in final_ans]
|
| 73 |
+
|
| 74 |
+
return "、".join(final_ans)
|
| 75 |
+
|
| 76 |
+
except:
|
| 77 |
+
return 'api error'
|
| 78 |
|
| 79 |
|
| 80 |
with gr.Blocks() as demo:
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
if __name__ == "__main__":
|
| 94 |
+
demo.launch(share=True)
|